* v2-prototype: (48 commits) Fix typos in comments Add modifier and tests for removeAuthorizedAddressAtIndex Update and add tests Change removeAuthorizedAddress => removeAuthorizedAddressAtIndex Move isFunctionRemoveAuthorizedAddress to test Fix usage of `popLastByte` Fix LibBytes is a library Remove `areBytesEqual` Fix usage of `contentAddress()` Clean low bits in bytes4 Clean high bits in address Refactor LibBytes.readBytes4 for consistency Fix LibBytes.equals Add trailing garbage testcase for LibBytes.equals Rename bytes.equals Add slice and sliceDestructive Rename bytes.rawAddress and add bytes.contentAddress Rename read/writeBytesWithLength Using LibBytes for bytes Make LibBytes a library ... # Conflicts: # packages/contracts/src/contracts/current/utils/Ownable/Ownable.sol # packages/contracts/test/libraries/lib_bytes.ts
834 lines
44 KiB
TypeScript
834 lines
44 KiB
TypeScript
import { BlockchainLifecycle } from '@0xproject/dev-utils';
|
|
import { assetProxyUtils, generatePseudoRandomSalt } from '@0xproject/order-utils';
|
|
import { BigNumber } from '@0xproject/utils';
|
|
import BN = require('bn.js');
|
|
import * as chai from 'chai';
|
|
import ethUtil = require('ethereumjs-util');
|
|
import * as _ from 'lodash';
|
|
|
|
import { TestLibBytesContract } from '../../src/generated_contract_wrappers/test_lib_bytes';
|
|
import { artifacts } from '../../src/utils/artifacts';
|
|
import { expectRevertOrOtherErrorAsync } from '../../src/utils/assertions';
|
|
import { chaiSetup } from '../../src/utils/chai_setup';
|
|
import { constants } from '../../src/utils/constants';
|
|
import { RevertReasons } from '../../src/utils/types';
|
|
import { provider, txDefaults, web3Wrapper } from '../../src/utils/web3_wrapper';
|
|
|
|
chaiSetup.configure();
|
|
const expect = chai.expect;
|
|
const blockchainLifecycle = new BlockchainLifecycle(web3Wrapper);
|
|
|
|
// BUG: Ideally we would use Buffer.from(memory).toString('hex')
|
|
// https://github.com/Microsoft/TypeScript/issues/23155
|
|
const toHex = (buf: Uint8Array): string => buf.reduce((a, v) => a + ('00' + v.toString(16)).slice(-2), '0x');
|
|
|
|
const fromHex = (str: string): Uint8Array => Uint8Array.from(Buffer.from(str.slice(2), 'hex'));
|
|
|
|
describe('LibBytes', () => {
|
|
let libBytes: TestLibBytesContract;
|
|
const byteArrayShorterThan32Bytes = '0x012345';
|
|
const byteArrayShorterThan20Bytes = byteArrayShorterThan32Bytes;
|
|
const byteArrayLongerThan32Bytes =
|
|
'0x0123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef';
|
|
const byteArrayLongerThan32BytesFirstBytesSwapped =
|
|
'0x2301456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef';
|
|
const byteArrayLongerThan32BytesLastBytesSwapped =
|
|
'0x0123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef0123456789abefcd';
|
|
let testAddress: string;
|
|
let testAddressB: string;
|
|
const testBytes32 = '0x102030405060708090a0b0c0d0e0f0102030405060708090a0b0c0d0e0f01020';
|
|
const testBytes32B = '0x534877abd8443578526845cdfef020047528759477fedef87346527659aced32';
|
|
const testUint256 = new BigNumber(testBytes32, 16);
|
|
const testUint256B = new BigNumber(testBytes32B, 16);
|
|
let shortData: string;
|
|
let shortTestBytes: string;
|
|
let shortTestBytesAsBuffer: Buffer;
|
|
let wordOfData: string;
|
|
let wordOfTestBytes: string;
|
|
let wordOfTestBytesAsBuffer: Buffer;
|
|
let longData: string;
|
|
let longTestBytes: string;
|
|
let longTestBytesAsBuffer: Buffer;
|
|
|
|
before(async () => {
|
|
await blockchainLifecycle.startAsync();
|
|
});
|
|
after(async () => {
|
|
await blockchainLifecycle.revertAsync();
|
|
});
|
|
before(async () => {
|
|
// Setup accounts & addresses
|
|
const accounts = await web3Wrapper.getAvailableAddressesAsync();
|
|
testAddress = accounts[1];
|
|
testAddressB = accounts[2];
|
|
// Deploy LibBytes
|
|
libBytes = await TestLibBytesContract.deployFrom0xArtifactAsync(artifacts.TestLibBytes, provider, txDefaults);
|
|
// Verify lengths of test data
|
|
const byteArrayShorterThan32BytesLength = ethUtil.toBuffer(byteArrayShorterThan32Bytes).byteLength;
|
|
expect(byteArrayShorterThan32BytesLength).to.be.lessThan(32);
|
|
const byteArrayLongerThan32BytesLength = ethUtil.toBuffer(byteArrayLongerThan32Bytes).byteLength;
|
|
expect(byteArrayLongerThan32BytesLength).to.be.greaterThan(32);
|
|
const testBytes32Length = ethUtil.toBuffer(testBytes32).byteLength;
|
|
expect(testBytes32Length).to.be.equal(32);
|
|
// Create short test bytes
|
|
shortData = '0xffffaa';
|
|
const encodedShortData = ethUtil.toBuffer(shortData);
|
|
const shortDataLength = new BigNumber(encodedShortData.byteLength);
|
|
const encodedShortDataLength = assetProxyUtils.encodeUint256(shortDataLength);
|
|
shortTestBytesAsBuffer = Buffer.concat([encodedShortDataLength, encodedShortData]);
|
|
shortTestBytes = ethUtil.bufferToHex(shortTestBytesAsBuffer);
|
|
// Create test bytes one word in length
|
|
wordOfData = ethUtil.bufferToHex(assetProxyUtils.encodeUint256(generatePseudoRandomSalt()));
|
|
const encodedWordOfData = ethUtil.toBuffer(wordOfData);
|
|
const wordOfDataLength = new BigNumber(encodedWordOfData.byteLength);
|
|
const encodedWordOfDataLength = assetProxyUtils.encodeUint256(wordOfDataLength);
|
|
wordOfTestBytesAsBuffer = Buffer.concat([encodedWordOfDataLength, encodedWordOfData]);
|
|
wordOfTestBytes = ethUtil.bufferToHex(wordOfTestBytesAsBuffer);
|
|
// Create long test bytes (combines short test bytes with word of test bytes)
|
|
longData = ethUtil.bufferToHex(Buffer.concat([encodedShortData, encodedWordOfData]));
|
|
const longDataLength = new BigNumber(encodedShortData.byteLength + encodedWordOfData.byteLength);
|
|
const encodedLongDataLength = assetProxyUtils.encodeUint256(longDataLength);
|
|
longTestBytesAsBuffer = Buffer.concat([encodedLongDataLength, encodedShortData, encodedWordOfData]);
|
|
longTestBytes = ethUtil.bufferToHex(longTestBytesAsBuffer);
|
|
});
|
|
beforeEach(async () => {
|
|
await blockchainLifecycle.startAsync();
|
|
});
|
|
afterEach(async () => {
|
|
await blockchainLifecycle.revertAsync();
|
|
});
|
|
|
|
describe('popLastByte', () => {
|
|
it('should revert if length is 0', async () => {
|
|
return expectRevertOrOtherErrorAsync(
|
|
libBytes.publicPopLastByte.callAsync(constants.NULL_BYTES),
|
|
RevertReasons.LibBytesGreaterThanZeroLengthRequired,
|
|
);
|
|
});
|
|
it('should pop the last byte from the input and return it', async () => {
|
|
const [newBytes, poppedByte] = await libBytes.publicPopLastByte.callAsync(byteArrayLongerThan32Bytes);
|
|
const expectedNewBytes = byteArrayLongerThan32Bytes.slice(0, -2);
|
|
const expectedPoppedByte = `0x${byteArrayLongerThan32Bytes.slice(-2)}`;
|
|
expect(newBytes).to.equal(expectedNewBytes);
|
|
expect(poppedByte).to.equal(expectedPoppedByte);
|
|
});
|
|
});
|
|
|
|
describe('popLast20Bytes', () => {
|
|
it('should revert if length is less than 20', async () => {
|
|
return expectRevertOrOtherErrorAsync(
|
|
libBytes.publicPopLast20Bytes.callAsync(byteArrayShorterThan20Bytes),
|
|
RevertReasons.LibBytesGreaterOrEqualTo20LengthRequired,
|
|
);
|
|
});
|
|
it('should pop the last 20 bytes from the input and return it', async () => {
|
|
const [newBytes, poppedAddress] = await libBytes.publicPopLast20Bytes.callAsync(byteArrayLongerThan32Bytes);
|
|
const expectedNewBytes = byteArrayLongerThan32Bytes.slice(0, -40);
|
|
const expectedPoppedAddress = `0x${byteArrayLongerThan32Bytes.slice(-40)}`;
|
|
expect(newBytes).to.equal(expectedNewBytes);
|
|
expect(poppedAddress).to.equal(expectedPoppedAddress);
|
|
});
|
|
});
|
|
|
|
describe('equals', () => {
|
|
it('should return true if byte arrays are equal (both arrays < 32 bytes)', async () => {
|
|
const isEqual = await libBytes.publicEquals.callAsync(
|
|
byteArrayShorterThan32Bytes,
|
|
byteArrayShorterThan32Bytes,
|
|
);
|
|
return expect(isEqual).to.be.true();
|
|
});
|
|
it('should return true if byte arrays are equal (both arrays > 32 bytes)', async () => {
|
|
const isEqual = await libBytes.publicEquals.callAsync(
|
|
byteArrayLongerThan32Bytes,
|
|
byteArrayLongerThan32Bytes,
|
|
);
|
|
return expect(isEqual).to.be.true();
|
|
});
|
|
it('should return false if byte arrays are not equal (first array < 32 bytes, second array > 32 bytes)', async () => {
|
|
const isEqual = await libBytes.publicEquals.callAsync(
|
|
byteArrayShorterThan32Bytes,
|
|
byteArrayLongerThan32Bytes,
|
|
);
|
|
return expect(isEqual).to.be.false();
|
|
});
|
|
it('should return false if byte arrays are not equal (first array > 32 bytes, second array < 32 bytes)', async () => {
|
|
const isEqual = await libBytes.publicEquals.callAsync(
|
|
byteArrayLongerThan32Bytes,
|
|
byteArrayShorterThan32Bytes,
|
|
);
|
|
return expect(isEqual).to.be.false();
|
|
});
|
|
it('should return false if byte arrays are not equal (same length, but a byte in first word differs)', async () => {
|
|
const isEqual = await libBytes.publicEquals.callAsync(
|
|
byteArrayLongerThan32BytesFirstBytesSwapped,
|
|
byteArrayLongerThan32Bytes,
|
|
);
|
|
return expect(isEqual).to.be.false();
|
|
});
|
|
it('should return false if byte arrays are not equal (same length, but a byte in last word differs)', async () => {
|
|
const isEqual = await libBytes.publicEquals.callAsync(
|
|
byteArrayLongerThan32BytesLastBytesSwapped,
|
|
byteArrayLongerThan32Bytes,
|
|
);
|
|
return expect(isEqual).to.be.false();
|
|
});
|
|
|
|
describe('should ignore trailing data', () => {
|
|
it('should return true when both < 32 bytes', async () => {
|
|
const isEqual = await libBytes.publicEqualsPop1.callAsync('0x0102', '0x0103');
|
|
return expect(isEqual).to.be.true();
|
|
});
|
|
});
|
|
});
|
|
|
|
describe('deepCopyBytes', () => {
|
|
it('should revert if dest is shorter than source', async () => {
|
|
return expectRevertOrOtherErrorAsync(
|
|
libBytes.publicDeepCopyBytes.callAsync(byteArrayShorterThan32Bytes, byteArrayLongerThan32Bytes),
|
|
RevertReasons.LibBytesGreaterOrEqualToSourceBytesLengthRequired,
|
|
);
|
|
});
|
|
it('should overwrite dest with source if source and dest have equal length', async () => {
|
|
const zeroedByteArrayLongerThan32Bytes = `0x${_.repeat('0', byteArrayLongerThan32Bytes.length - 2)}`;
|
|
const zeroedBytesAfterCopy = await libBytes.publicDeepCopyBytes.callAsync(
|
|
zeroedByteArrayLongerThan32Bytes,
|
|
byteArrayLongerThan32Bytes,
|
|
);
|
|
return expect(zeroedBytesAfterCopy).to.be.equal(byteArrayLongerThan32Bytes);
|
|
});
|
|
it('should overwrite the leftmost len(source) bytes of dest if dest is larger than source', async () => {
|
|
const zeroedByteArrayLongerThan32Bytes = `0x${_.repeat('0', byteArrayLongerThan32Bytes.length * 2)}`;
|
|
const zeroedBytesAfterCopy = await libBytes.publicDeepCopyBytes.callAsync(
|
|
zeroedByteArrayLongerThan32Bytes,
|
|
byteArrayLongerThan32Bytes,
|
|
);
|
|
const copiedBytes = zeroedBytesAfterCopy.slice(0, byteArrayLongerThan32Bytes.length);
|
|
return expect(copiedBytes).to.be.equal(byteArrayLongerThan32Bytes);
|
|
});
|
|
it('should not overwrite the rightmost bytes of dest if dest is larger than source', async () => {
|
|
const zeroedByteArrayLongerThan32Bytes = `0x${_.repeat('0', byteArrayLongerThan32Bytes.length * 2)}`;
|
|
const zeroedBytesAfterCopy = await libBytes.publicDeepCopyBytes.callAsync(
|
|
zeroedByteArrayLongerThan32Bytes,
|
|
byteArrayLongerThan32Bytes,
|
|
);
|
|
const expectedNotCopiedBytes = zeroedByteArrayLongerThan32Bytes.slice(byteArrayLongerThan32Bytes.length);
|
|
const notCopiedBytes = zeroedBytesAfterCopy.slice(byteArrayLongerThan32Bytes.length);
|
|
return expect(notCopiedBytes).to.be.equal(expectedNotCopiedBytes);
|
|
});
|
|
});
|
|
|
|
describe('readAddress', () => {
|
|
it('should successfully read address when the address takes up the whole array', async () => {
|
|
const byteArray = ethUtil.addHexPrefix(testAddress);
|
|
const testAddressOffset = new BigNumber(0);
|
|
const address = await libBytes.publicReadAddress.callAsync(byteArray, testAddressOffset);
|
|
return expect(address).to.be.equal(testAddress);
|
|
});
|
|
it('should successfully read address when it is offset in the array', async () => {
|
|
const addressByteArrayBuffer = ethUtil.toBuffer(testAddress);
|
|
const prefixByteArrayBuffer = ethUtil.toBuffer('0xabcdef');
|
|
const combinedByteArrayBuffer = Buffer.concat([prefixByteArrayBuffer, addressByteArrayBuffer]);
|
|
const combinedByteArray = ethUtil.bufferToHex(combinedByteArrayBuffer);
|
|
const testAddressOffset = new BigNumber(prefixByteArrayBuffer.byteLength);
|
|
const address = await libBytes.publicReadAddress.callAsync(combinedByteArray, testAddressOffset);
|
|
return expect(address).to.be.equal(testAddress);
|
|
});
|
|
it('should fail if the byte array is too short to hold an address', async () => {
|
|
const shortByteArray = '0xabcdef';
|
|
const offset = new BigNumber(0);
|
|
return expectRevertOrOtherErrorAsync(
|
|
libBytes.publicReadAddress.callAsync(shortByteArray, offset),
|
|
RevertReasons.LibBytesGreaterOrEqualTo20LengthRequired,
|
|
);
|
|
});
|
|
it('should fail if the length between the offset and end of the byte array is too short to hold an address', async () => {
|
|
const byteArray = testAddress;
|
|
const badOffset = new BigNumber(ethUtil.toBuffer(byteArray).byteLength);
|
|
return expectRevertOrOtherErrorAsync(
|
|
libBytes.publicReadAddress.callAsync(byteArray, badOffset),
|
|
RevertReasons.LibBytesGreaterOrEqualTo20LengthRequired,
|
|
);
|
|
});
|
|
});
|
|
|
|
describe('writeAddress', () => {
|
|
it('should successfully write address when the address takes up the whole array', async () => {
|
|
const byteArray = testAddress;
|
|
const testAddressOffset = new BigNumber(0);
|
|
const newByteArray = await libBytes.publicWriteAddress.callAsync(
|
|
byteArray,
|
|
testAddressOffset,
|
|
testAddressB,
|
|
);
|
|
return expect(newByteArray).to.be.equal(testAddressB);
|
|
});
|
|
it('should successfully write address when it is offset in the array', async () => {
|
|
const addressByteArrayBuffer = ethUtil.toBuffer(testAddress);
|
|
const prefixByteArrayBuffer = ethUtil.toBuffer('0xabcdef');
|
|
const combinedByteArrayBuffer = Buffer.concat([prefixByteArrayBuffer, addressByteArrayBuffer]);
|
|
const combinedByteArray = ethUtil.bufferToHex(combinedByteArrayBuffer);
|
|
const testAddressOffset = new BigNumber(prefixByteArrayBuffer.byteLength);
|
|
const newByteArray = await libBytes.publicWriteAddress.callAsync(
|
|
combinedByteArray,
|
|
testAddressOffset,
|
|
testAddressB,
|
|
);
|
|
const newByteArrayBuffer = ethUtil.toBuffer(newByteArray);
|
|
const addressFromOffsetBuffer = newByteArrayBuffer.slice(prefixByteArrayBuffer.byteLength);
|
|
const addressFromOffset = ethUtil.addHexPrefix(ethUtil.bufferToHex(addressFromOffsetBuffer));
|
|
return expect(addressFromOffset).to.be.equal(testAddressB);
|
|
});
|
|
it('should fail if the byte array is too short to hold an address', async () => {
|
|
const offset = new BigNumber(0);
|
|
return expectRevertOrOtherErrorAsync(
|
|
libBytes.publicWriteAddress.callAsync(byteArrayShorterThan20Bytes, offset, testAddress),
|
|
RevertReasons.LibBytesGreaterOrEqualTo20LengthRequired,
|
|
);
|
|
});
|
|
it('should fail if the length between the offset and end of the byte array is too short to hold an address', async () => {
|
|
const byteArray = byteArrayLongerThan32Bytes;
|
|
const badOffset = new BigNumber(ethUtil.toBuffer(byteArray).byteLength);
|
|
return expectRevertOrOtherErrorAsync(
|
|
libBytes.publicWriteAddress.callAsync(byteArray, badOffset, testAddress),
|
|
RevertReasons.LibBytesGreaterOrEqualTo20LengthRequired,
|
|
);
|
|
});
|
|
});
|
|
|
|
describe('readBytes32', () => {
|
|
it('should successfully read bytes32 when the bytes32 takes up the whole array', async () => {
|
|
const testBytes32Offset = new BigNumber(0);
|
|
const bytes32 = await libBytes.publicReadBytes32.callAsync(testBytes32, testBytes32Offset);
|
|
return expect(bytes32).to.be.equal(testBytes32);
|
|
});
|
|
it('should successfully read bytes32 when it is offset in the array)', async () => {
|
|
const bytes32ByteArrayBuffer = ethUtil.toBuffer(testBytes32);
|
|
const prefixByteArrayBuffer = ethUtil.toBuffer('0xabcdef');
|
|
const combinedByteArrayBuffer = Buffer.concat([prefixByteArrayBuffer, bytes32ByteArrayBuffer]);
|
|
const combinedByteArray = ethUtil.bufferToHex(combinedByteArrayBuffer);
|
|
const testBytes32Offset = new BigNumber(prefixByteArrayBuffer.byteLength);
|
|
const bytes32 = await libBytes.publicReadBytes32.callAsync(combinedByteArray, testBytes32Offset);
|
|
return expect(bytes32).to.be.equal(testBytes32);
|
|
});
|
|
it('should fail if the byte array is too short to hold a bytes32', async () => {
|
|
const offset = new BigNumber(0);
|
|
return expectRevertOrOtherErrorAsync(
|
|
libBytes.publicReadBytes32.callAsync(byteArrayShorterThan32Bytes, offset),
|
|
RevertReasons.LibBytesGreaterOrEqualTo32LengthRequired,
|
|
);
|
|
});
|
|
it('should fail if the length between the offset and end of the byte array is too short to hold a bytes32', async () => {
|
|
const badOffset = new BigNumber(ethUtil.toBuffer(testBytes32).byteLength);
|
|
return expectRevertOrOtherErrorAsync(
|
|
libBytes.publicReadBytes32.callAsync(testBytes32, badOffset),
|
|
RevertReasons.LibBytesGreaterOrEqualTo32LengthRequired,
|
|
);
|
|
});
|
|
});
|
|
|
|
describe('writeBytes32', () => {
|
|
it('should successfully write bytes32 when the address takes up the whole array', async () => {
|
|
const byteArray = testBytes32;
|
|
const testBytes32Offset = new BigNumber(0);
|
|
const newByteArray = await libBytes.publicWriteBytes32.callAsync(
|
|
byteArray,
|
|
testBytes32Offset,
|
|
testBytes32B,
|
|
);
|
|
return expect(newByteArray).to.be.equal(testBytes32B);
|
|
});
|
|
it('should successfully write bytes32 when it is offset in the array', async () => {
|
|
const bytes32ByteArrayBuffer = ethUtil.toBuffer(testBytes32);
|
|
const prefixByteArrayBuffer = ethUtil.toBuffer('0xabcdef');
|
|
const combinedByteArrayBuffer = Buffer.concat([prefixByteArrayBuffer, bytes32ByteArrayBuffer]);
|
|
const combinedByteArray = ethUtil.bufferToHex(combinedByteArrayBuffer);
|
|
const testBytes32Offset = new BigNumber(prefixByteArrayBuffer.byteLength);
|
|
const newByteArray = await libBytes.publicWriteBytes32.callAsync(
|
|
combinedByteArray,
|
|
testBytes32Offset,
|
|
testBytes32B,
|
|
);
|
|
const newByteArrayBuffer = ethUtil.toBuffer(newByteArray);
|
|
const bytes32FromOffsetBuffer = newByteArrayBuffer.slice(prefixByteArrayBuffer.byteLength);
|
|
const bytes32FromOffset = ethUtil.addHexPrefix(ethUtil.bufferToHex(bytes32FromOffsetBuffer));
|
|
return expect(bytes32FromOffset).to.be.equal(testBytes32B);
|
|
});
|
|
it('should fail if the byte array is too short to hold a bytes32', async () => {
|
|
const offset = new BigNumber(0);
|
|
return expectRevertOrOtherErrorAsync(
|
|
libBytes.publicWriteBytes32.callAsync(byteArrayShorterThan32Bytes, offset, testBytes32),
|
|
RevertReasons.LibBytesGreaterOrEqualTo32LengthRequired,
|
|
);
|
|
});
|
|
it('should fail if the length between the offset and end of the byte array is too short to hold a bytes32', async () => {
|
|
const byteArray = byteArrayLongerThan32Bytes;
|
|
const badOffset = new BigNumber(ethUtil.toBuffer(byteArray).byteLength);
|
|
return expectRevertOrOtherErrorAsync(
|
|
libBytes.publicWriteBytes32.callAsync(byteArray, badOffset, testBytes32),
|
|
RevertReasons.LibBytesGreaterOrEqualTo32LengthRequired,
|
|
);
|
|
});
|
|
});
|
|
|
|
describe('readUint256', () => {
|
|
it('should successfully read uint256 when the uint256 takes up the whole array', async () => {
|
|
const formattedTestUint256 = new BN(testUint256.toString(10));
|
|
const testUint256AsBuffer = ethUtil.toBuffer(formattedTestUint256);
|
|
const byteArray = ethUtil.bufferToHex(testUint256AsBuffer);
|
|
const testUint256Offset = new BigNumber(0);
|
|
const uint256 = await libBytes.publicReadUint256.callAsync(byteArray, testUint256Offset);
|
|
return expect(uint256).to.bignumber.equal(testUint256);
|
|
});
|
|
it('should successfully read uint256 when it is offset in the array', async () => {
|
|
const prefixByteArrayBuffer = ethUtil.toBuffer('0xabcdef');
|
|
const formattedTestUint256 = new BN(testUint256.toString(10));
|
|
const testUint256AsBuffer = ethUtil.toBuffer(formattedTestUint256);
|
|
const combinedByteArrayBuffer = Buffer.concat([prefixByteArrayBuffer, testUint256AsBuffer]);
|
|
const combinedByteArray = ethUtil.bufferToHex(combinedByteArrayBuffer);
|
|
const testUint256Offset = new BigNumber(prefixByteArrayBuffer.byteLength);
|
|
const uint256 = await libBytes.publicReadUint256.callAsync(combinedByteArray, testUint256Offset);
|
|
return expect(uint256).to.bignumber.equal(testUint256);
|
|
});
|
|
it('should fail if the byte array is too short to hold a uint256', async () => {
|
|
const offset = new BigNumber(0);
|
|
return expectRevertOrOtherErrorAsync(
|
|
libBytes.publicReadUint256.callAsync(byteArrayShorterThan32Bytes, offset),
|
|
RevertReasons.LibBytesGreaterOrEqualTo32LengthRequired,
|
|
);
|
|
});
|
|
it('should fail if the length between the offset and end of the byte array is too short to hold a uint256', async () => {
|
|
const formattedTestUint256 = new BN(testUint256.toString(10));
|
|
const testUint256AsBuffer = ethUtil.toBuffer(formattedTestUint256);
|
|
const byteArray = ethUtil.bufferToHex(testUint256AsBuffer);
|
|
const badOffset = new BigNumber(testUint256AsBuffer.byteLength);
|
|
return expectRevertOrOtherErrorAsync(
|
|
libBytes.publicReadUint256.callAsync(byteArray, badOffset),
|
|
RevertReasons.LibBytesGreaterOrEqualTo32LengthRequired,
|
|
);
|
|
});
|
|
});
|
|
|
|
describe('writeUint256', () => {
|
|
it('should successfully write uint256 when the address takes up the whole array', async () => {
|
|
const byteArray = testBytes32;
|
|
const testUint256Offset = new BigNumber(0);
|
|
const newByteArray = await libBytes.publicWriteUint256.callAsync(
|
|
byteArray,
|
|
testUint256Offset,
|
|
testUint256B,
|
|
);
|
|
const newByteArrayAsUint256 = new BigNumber(newByteArray, 16);
|
|
return expect(newByteArrayAsUint256).to.be.bignumber.equal(testUint256B);
|
|
});
|
|
it('should successfully write uint256 when it is offset in the array', async () => {
|
|
const bytes32ByteArrayBuffer = ethUtil.toBuffer(testBytes32);
|
|
const prefixByteArrayBuffer = ethUtil.toBuffer('0xabcdef');
|
|
const combinedByteArrayBuffer = Buffer.concat([prefixByteArrayBuffer, bytes32ByteArrayBuffer]);
|
|
const combinedByteArray = ethUtil.bufferToHex(combinedByteArrayBuffer);
|
|
const testUint256Offset = new BigNumber(prefixByteArrayBuffer.byteLength);
|
|
const newByteArray = await libBytes.publicWriteUint256.callAsync(
|
|
combinedByteArray,
|
|
testUint256Offset,
|
|
testUint256B,
|
|
);
|
|
const newByteArrayBuffer = ethUtil.toBuffer(newByteArray);
|
|
const uint256FromOffsetBuffer = newByteArrayBuffer.slice(prefixByteArrayBuffer.byteLength);
|
|
const uint256FromOffset = new BigNumber(
|
|
ethUtil.addHexPrefix(ethUtil.bufferToHex(uint256FromOffsetBuffer)),
|
|
16,
|
|
);
|
|
return expect(uint256FromOffset).to.be.bignumber.equal(testUint256B);
|
|
});
|
|
it('should fail if the byte array is too short to hold a uint256', async () => {
|
|
const offset = new BigNumber(0);
|
|
return expectRevertOrOtherErrorAsync(
|
|
libBytes.publicWriteUint256.callAsync(byteArrayShorterThan32Bytes, offset, testUint256),
|
|
RevertReasons.LibBytesGreaterOrEqualTo32LengthRequired,
|
|
);
|
|
});
|
|
it('should fail if the length between the offset and end of the byte array is too short to hold a uint256', async () => {
|
|
const byteArray = byteArrayLongerThan32Bytes;
|
|
const badOffset = new BigNumber(ethUtil.toBuffer(byteArray).byteLength);
|
|
return expectRevertOrOtherErrorAsync(
|
|
libBytes.publicWriteUint256.callAsync(byteArray, badOffset, testUint256),
|
|
RevertReasons.LibBytesGreaterOrEqualTo32LengthRequired,
|
|
);
|
|
});
|
|
});
|
|
|
|
describe('readBytes4', () => {
|
|
// AssertionError: expected promise to be rejected with an error including 'revert' but it was fulfilled with '0x08c379a0'
|
|
it('should revert if byte array has a length < 4', async () => {
|
|
const byteArrayLessThan4Bytes = '0x010101';
|
|
return expectRevertOrOtherErrorAsync(
|
|
libBytes.publicReadBytes4.callAsync(byteArrayLessThan4Bytes, new BigNumber(0)),
|
|
RevertReasons.LibBytesGreaterOrEqualTo4LengthRequired,
|
|
);
|
|
});
|
|
it('should return the first 4 bytes of a byte array of arbitrary length', async () => {
|
|
const first4Bytes = await libBytes.publicReadBytes4.callAsync(byteArrayLongerThan32Bytes, new BigNumber(0));
|
|
const expectedFirst4Bytes = byteArrayLongerThan32Bytes.slice(0, 10);
|
|
expect(first4Bytes).to.equal(expectedFirst4Bytes);
|
|
});
|
|
});
|
|
|
|
describe('readBytesWithLength', () => {
|
|
it('should successfully read short, nested array of bytes when it takes up the whole array', async () => {
|
|
const testBytesOffset = new BigNumber(0);
|
|
const bytes = await libBytes.publicReadBytesWithLength.callAsync(shortTestBytes, testBytesOffset);
|
|
return expect(bytes).to.be.equal(shortData);
|
|
});
|
|
it('should successfully read short, nested array of bytes when it is offset in the array', async () => {
|
|
const prefixByteArrayBuffer = ethUtil.toBuffer('0xabcdef');
|
|
const combinedByteArrayBuffer = Buffer.concat([prefixByteArrayBuffer, shortTestBytesAsBuffer]);
|
|
const combinedByteArray = ethUtil.bufferToHex(combinedByteArrayBuffer);
|
|
const testUint256Offset = new BigNumber(prefixByteArrayBuffer.byteLength);
|
|
const bytes = await libBytes.publicReadBytesWithLength.callAsync(combinedByteArray, testUint256Offset);
|
|
return expect(bytes).to.be.equal(shortData);
|
|
});
|
|
it('should successfully read a nested array of bytes - one word in length - when it takes up the whole array', async () => {
|
|
const testBytesOffset = new BigNumber(0);
|
|
const bytes = await libBytes.publicReadBytesWithLength.callAsync(wordOfTestBytes, testBytesOffset);
|
|
return expect(bytes).to.be.equal(wordOfData);
|
|
});
|
|
it('should successfully read a nested array of bytes - one word in length - when it is offset in the array', async () => {
|
|
const prefixByteArrayBuffer = ethUtil.toBuffer('0xabcdef');
|
|
const combinedByteArrayBuffer = Buffer.concat([prefixByteArrayBuffer, wordOfTestBytesAsBuffer]);
|
|
const combinedByteArray = ethUtil.bufferToHex(combinedByteArrayBuffer);
|
|
const testUint256Offset = new BigNumber(prefixByteArrayBuffer.byteLength);
|
|
const bytes = await libBytes.publicReadBytesWithLength.callAsync(combinedByteArray, testUint256Offset);
|
|
return expect(bytes).to.be.equal(wordOfData);
|
|
});
|
|
it('should successfully read long, nested array of bytes when it takes up the whole array', async () => {
|
|
const testBytesOffset = new BigNumber(0);
|
|
const bytes = await libBytes.publicReadBytesWithLength.callAsync(longTestBytes, testBytesOffset);
|
|
return expect(bytes).to.be.equal(longData);
|
|
});
|
|
it('should successfully read long, nested array of bytes when it is offset in the array', async () => {
|
|
const prefixByteArrayBuffer = ethUtil.toBuffer('0xabcdef');
|
|
const combinedByteArrayBuffer = Buffer.concat([prefixByteArrayBuffer, longTestBytesAsBuffer]);
|
|
const combinedByteArray = ethUtil.bufferToHex(combinedByteArrayBuffer);
|
|
const testUint256Offset = new BigNumber(prefixByteArrayBuffer.byteLength);
|
|
const bytes = await libBytes.publicReadBytesWithLength.callAsync(combinedByteArray, testUint256Offset);
|
|
return expect(bytes).to.be.equal(longData);
|
|
});
|
|
it('should fail if the byte array is too short to hold the length of a nested byte array', async () => {
|
|
// The length of the nested array is 32 bytes. By storing less than 32 bytes, a length cannot be read.
|
|
const offset = new BigNumber(0);
|
|
return expectRevertOrOtherErrorAsync(
|
|
libBytes.publicReadBytesWithLength.callAsync(byteArrayShorterThan32Bytes, offset),
|
|
RevertReasons.LibBytesGreaterOrEqualTo32LengthRequired,
|
|
);
|
|
});
|
|
it('should fail if we store a nested byte array length, without a nested byte array', async () => {
|
|
const offset = new BigNumber(0);
|
|
return expectRevertOrOtherErrorAsync(
|
|
libBytes.publicReadBytesWithLength.callAsync(testBytes32, offset),
|
|
RevertReasons.LibBytesGreaterOrEqualToNestedBytesLengthRequired,
|
|
);
|
|
});
|
|
it('should fail if the length between the offset and end of the byte array is too short to hold the length of a nested byte array', async () => {
|
|
const badOffset = new BigNumber(ethUtil.toBuffer(byteArrayShorterThan32Bytes).byteLength);
|
|
return expectRevertOrOtherErrorAsync(
|
|
libBytes.publicReadBytesWithLength.callAsync(byteArrayShorterThan32Bytes, badOffset),
|
|
RevertReasons.LibBytesGreaterOrEqualTo32LengthRequired,
|
|
);
|
|
});
|
|
it('should fail if the length between the offset and end of the byte array is too short to hold the nested byte array', async () => {
|
|
const badOffset = new BigNumber(ethUtil.toBuffer(testBytes32).byteLength);
|
|
return expectRevertOrOtherErrorAsync(
|
|
libBytes.publicReadBytesWithLength.callAsync(testBytes32, badOffset),
|
|
RevertReasons.LibBytesGreaterOrEqualTo32LengthRequired,
|
|
);
|
|
});
|
|
});
|
|
|
|
describe('writeBytesWithLength', () => {
|
|
it('should successfully write short, nested array of bytes when it takes up the whole array)', async () => {
|
|
const testBytesOffset = new BigNumber(0);
|
|
const emptyByteArray = ethUtil.bufferToHex(new Buffer(shortTestBytesAsBuffer.byteLength));
|
|
const bytesWritten = await libBytes.publicWriteBytesWithLength.callAsync(
|
|
emptyByteArray,
|
|
testBytesOffset,
|
|
shortData,
|
|
);
|
|
const bytesRead = await libBytes.publicReadBytesWithLength.callAsync(bytesWritten, testBytesOffset);
|
|
return expect(bytesRead).to.be.equal(shortData);
|
|
});
|
|
it('should successfully write short, nested array of bytes when it is offset in the array', async () => {
|
|
// Write a prefix to the array
|
|
const prefixData = '0xabcdef';
|
|
const prefixDataAsBuffer = ethUtil.toBuffer(prefixData);
|
|
const prefixOffset = new BigNumber(0);
|
|
const emptyByteArray = ethUtil.bufferToHex(
|
|
new Buffer(prefixDataAsBuffer.byteLength + shortTestBytesAsBuffer.byteLength),
|
|
);
|
|
let bytesWritten = await libBytes.publicWriteBytesWithLength.callAsync(
|
|
emptyByteArray,
|
|
prefixOffset,
|
|
prefixData,
|
|
);
|
|
// Write data after prefix
|
|
const testBytesOffset = new BigNumber(prefixDataAsBuffer.byteLength);
|
|
bytesWritten = await libBytes.publicWriteBytesWithLength.callAsync(
|
|
bytesWritten,
|
|
testBytesOffset,
|
|
shortData,
|
|
);
|
|
// Read data after prefix and validate
|
|
const bytes = await libBytes.publicReadBytesWithLength.callAsync(bytesWritten, testBytesOffset);
|
|
return expect(bytes).to.be.equal(shortData);
|
|
});
|
|
it('should successfully write a nested array of bytes - one word in length - when it takes up the whole array', async () => {
|
|
const testBytesOffset = new BigNumber(0);
|
|
const emptyByteArray = ethUtil.bufferToHex(new Buffer(wordOfTestBytesAsBuffer.byteLength));
|
|
const bytesWritten = await libBytes.publicWriteBytesWithLength.callAsync(
|
|
emptyByteArray,
|
|
testBytesOffset,
|
|
wordOfData,
|
|
);
|
|
const bytesRead = await libBytes.publicReadBytesWithLength.callAsync(bytesWritten, testBytesOffset);
|
|
return expect(bytesRead).to.be.equal(wordOfData);
|
|
});
|
|
it('should successfully write a nested array of bytes - one word in length - when it is offset in the array', async () => {
|
|
// Write a prefix to the array
|
|
const prefixData = '0xabcdef';
|
|
const prefixDataAsBuffer = ethUtil.toBuffer(prefixData);
|
|
const prefixOffset = new BigNumber(0);
|
|
const emptyByteArray = ethUtil.bufferToHex(
|
|
new Buffer(prefixDataAsBuffer.byteLength + wordOfTestBytesAsBuffer.byteLength),
|
|
);
|
|
let bytesWritten = await libBytes.publicWriteBytesWithLength.callAsync(
|
|
emptyByteArray,
|
|
prefixOffset,
|
|
prefixData,
|
|
);
|
|
// Write data after prefix
|
|
const testBytesOffset = new BigNumber(prefixDataAsBuffer.byteLength);
|
|
bytesWritten = await libBytes.publicWriteBytesWithLength.callAsync(
|
|
bytesWritten,
|
|
testBytesOffset,
|
|
wordOfData,
|
|
);
|
|
// Read data after prefix and validate
|
|
const bytes = await libBytes.publicReadBytesWithLength.callAsync(bytesWritten, testBytesOffset);
|
|
return expect(bytes).to.be.equal(wordOfData);
|
|
});
|
|
it('should successfully write a long, nested bytes when it takes up the whole array', async () => {
|
|
const testBytesOffset = new BigNumber(0);
|
|
const emptyByteArray = ethUtil.bufferToHex(new Buffer(longTestBytesAsBuffer.byteLength));
|
|
const bytesWritten = await libBytes.publicWriteBytesWithLength.callAsync(
|
|
emptyByteArray,
|
|
testBytesOffset,
|
|
longData,
|
|
);
|
|
const bytesRead = await libBytes.publicReadBytesWithLength.callAsync(bytesWritten, testBytesOffset);
|
|
return expect(bytesRead).to.be.equal(longData);
|
|
});
|
|
it('should successfully write long, nested array of bytes when it is offset in the array', async () => {
|
|
// Write a prefix to the array
|
|
const prefixData = '0xabcdef';
|
|
const prefixDataAsBuffer = ethUtil.toBuffer(prefixData);
|
|
const prefixOffset = new BigNumber(0);
|
|
const emptyByteArray = ethUtil.bufferToHex(
|
|
new Buffer(prefixDataAsBuffer.byteLength + longTestBytesAsBuffer.byteLength),
|
|
);
|
|
let bytesWritten = await libBytes.publicWriteBytesWithLength.callAsync(
|
|
emptyByteArray,
|
|
prefixOffset,
|
|
prefixData,
|
|
);
|
|
// Write data after prefix
|
|
const testBytesOffset = new BigNumber(prefixDataAsBuffer.byteLength);
|
|
bytesWritten = await libBytes.publicWriteBytesWithLength.callAsync(bytesWritten, testBytesOffset, longData);
|
|
// Read data after prefix and validate
|
|
const bytes = await libBytes.publicReadBytesWithLength.callAsync(bytesWritten, testBytesOffset);
|
|
return expect(bytes).to.be.equal(longData);
|
|
});
|
|
it('should fail if the byte array is too short to hold the length of a nested byte array', async () => {
|
|
const offset = new BigNumber(0);
|
|
const emptyByteArray = ethUtil.bufferToHex(new Buffer(1));
|
|
return expectRevertOrOtherErrorAsync(
|
|
libBytes.publicWriteBytesWithLength.callAsync(emptyByteArray, offset, longData),
|
|
RevertReasons.LibBytesGreaterOrEqualToNestedBytesLengthRequired,
|
|
);
|
|
});
|
|
it('should fail if the length between the offset and end of the byte array is too short to hold the length of a nested byte array)', async () => {
|
|
const emptyByteArray = ethUtil.bufferToHex(new Buffer(shortTestBytesAsBuffer.byteLength));
|
|
const badOffset = new BigNumber(ethUtil.toBuffer(shortTestBytesAsBuffer).byteLength);
|
|
return expectRevertOrOtherErrorAsync(
|
|
libBytes.publicWriteBytesWithLength.callAsync(emptyByteArray, badOffset, shortData),
|
|
RevertReasons.LibBytesGreaterOrEqualToNestedBytesLengthRequired,
|
|
);
|
|
});
|
|
});
|
|
|
|
describe('memCopy', () => {
|
|
// Create memory 0x000102...FF
|
|
const memSize = 256;
|
|
// tslint:disable:no-shadowed-variable
|
|
const memory = new Uint8Array(memSize).map((_, i) => i);
|
|
const memHex = toHex(memory);
|
|
|
|
// Reference implementation to test against
|
|
const refMemcpy = (mem: Uint8Array, dest: number, source: number, length: number): Uint8Array =>
|
|
Uint8Array.from(mem).copyWithin(dest, source, source + length);
|
|
|
|
// Test vectors: destination, source, length, job description
|
|
type Tests = Array<[number, number, number, string]>;
|
|
|
|
const test = (tests: Tests) =>
|
|
tests.forEach(([dest, source, length, job]) =>
|
|
it(job, async () => {
|
|
const expected = refMemcpy(memory, dest, source, length);
|
|
const resultStr = await libBytes.testMemcpy.callAsync(
|
|
memHex,
|
|
new BigNumber(dest),
|
|
new BigNumber(source),
|
|
new BigNumber(length),
|
|
);
|
|
const result = fromHex(resultStr);
|
|
expect(result).to.deep.equal(expected);
|
|
}),
|
|
);
|
|
|
|
test([[0, 0, 0, 'copies zero bytes with overlap']]);
|
|
|
|
describe('copies forward', () =>
|
|
test([
|
|
[128, 0, 0, 'zero bytes'],
|
|
[128, 0, 1, 'one byte'],
|
|
[128, 0, 11, 'eleven bytes'],
|
|
[128, 0, 31, 'thirty-one bytes'],
|
|
[128, 0, 32, 'one word'],
|
|
[128, 0, 64, 'two words'],
|
|
[128, 0, 96, 'three words'],
|
|
[128, 0, 33, 'one word and one byte'],
|
|
[128, 0, 72, 'two words and eight bytes'],
|
|
[128, 0, 100, 'three words and four bytes'],
|
|
]));
|
|
|
|
describe('copies forward within one word', () =>
|
|
test([
|
|
[16, 0, 0, 'zero bytes'],
|
|
[16, 0, 1, 'one byte'],
|
|
[16, 0, 11, 'eleven bytes'],
|
|
[16, 0, 16, 'sixteen bytes'],
|
|
]));
|
|
|
|
describe('copies forward with one byte overlap', () =>
|
|
test([
|
|
[0, 0, 1, 'one byte'],
|
|
[10, 0, 11, 'eleven bytes'],
|
|
[30, 0, 31, 'thirty-one bytes'],
|
|
[31, 0, 32, 'one word'],
|
|
[32, 0, 33, 'one word and one byte'],
|
|
[71, 0, 72, 'two words and eight bytes'],
|
|
[99, 0, 100, 'three words and four bytes'],
|
|
]));
|
|
|
|
describe('copies forward with thirty-one bytes overlap', () =>
|
|
test([
|
|
[0, 0, 31, 'thirty-one bytes'],
|
|
[1, 0, 32, 'one word'],
|
|
[2, 0, 33, 'one word and one byte'],
|
|
[41, 0, 72, 'two words and eight bytes'],
|
|
[69, 0, 100, 'three words and four bytes'],
|
|
]));
|
|
|
|
describe('copies forward with one word overlap', () =>
|
|
test([
|
|
[0, 0, 32, 'one word'],
|
|
[1, 0, 33, 'one word and one byte'],
|
|
[41, 0, 72, 'two words and eight bytes'],
|
|
[69, 0, 100, 'three words and four bytes'],
|
|
]));
|
|
|
|
describe('copies forward with one word and one byte overlap', () =>
|
|
test([
|
|
[0, 0, 33, 'one word and one byte'],
|
|
[40, 0, 72, 'two words and eight bytes'],
|
|
[68, 0, 100, 'three words and four bytes'],
|
|
]));
|
|
|
|
describe('copies forward with two words overlap', () =>
|
|
test([
|
|
[0, 0, 64, 'two words'],
|
|
[8, 0, 72, 'two words and eight bytes'],
|
|
[36, 0, 100, 'three words and four bytes'],
|
|
]));
|
|
|
|
describe('copies forward within one word and one byte overlap', () =>
|
|
test([[0, 0, 1, 'one byte'], [10, 0, 11, 'eleven bytes'], [15, 0, 16, 'sixteen bytes']]));
|
|
|
|
describe('copies backward', () =>
|
|
test([
|
|
[0, 128, 0, 'zero bytes'],
|
|
[0, 128, 1, 'one byte'],
|
|
[0, 128, 11, 'eleven bytes'],
|
|
[0, 128, 31, 'thirty-one bytes'],
|
|
[0, 128, 32, 'one word'],
|
|
[0, 128, 64, 'two words'],
|
|
[0, 128, 96, 'three words'],
|
|
[0, 128, 33, 'one word and one byte'],
|
|
[0, 128, 72, 'two words and eight bytes'],
|
|
[0, 128, 100, 'three words and four bytes'],
|
|
]));
|
|
|
|
describe('copies backward within one word', () =>
|
|
test([
|
|
[0, 16, 0, 'zero bytes'],
|
|
[0, 16, 1, 'one byte'],
|
|
[0, 16, 11, 'eleven bytes'],
|
|
[0, 16, 16, 'sixteen bytes'],
|
|
]));
|
|
|
|
describe('copies backward with one byte overlap', () =>
|
|
test([
|
|
[0, 0, 1, 'one byte'],
|
|
[0, 10, 11, 'eleven bytes'],
|
|
[0, 30, 31, 'thirty-one bytes'],
|
|
[0, 31, 32, 'one word'],
|
|
[0, 32, 33, 'one word and one byte'],
|
|
[0, 71, 72, 'two words and eight bytes'],
|
|
[0, 99, 100, 'three words and four bytes'],
|
|
]));
|
|
|
|
describe('copies backward with thirty-one bytes overlap', () =>
|
|
test([
|
|
[0, 0, 31, 'thirty-one bytes'],
|
|
[0, 1, 32, 'one word'],
|
|
[0, 2, 33, 'one word and one byte'],
|
|
[0, 41, 72, 'two words and eight bytes'],
|
|
[0, 69, 100, 'three words and four bytes'],
|
|
]));
|
|
|
|
describe('copies backward with one word overlap', () =>
|
|
test([
|
|
[0, 0, 32, 'one word'],
|
|
[0, 1, 33, 'one word and one byte'],
|
|
[0, 41, 72, 'two words and eight bytes'],
|
|
[0, 69, 100, 'three words and four bytes'],
|
|
]));
|
|
|
|
describe('copies backward with one word and one byte overlap', () =>
|
|
test([
|
|
[0, 0, 33, 'one word and one byte'],
|
|
[0, 40, 72, 'two words and eight bytes'],
|
|
[0, 68, 100, 'three words and four bytes'],
|
|
]));
|
|
|
|
describe('copies backward with two words overlap', () =>
|
|
test([
|
|
[0, 0, 64, 'two words'],
|
|
[0, 8, 72, 'two words and eight bytes'],
|
|
[0, 36, 100, 'three words and four bytes'],
|
|
]));
|
|
|
|
describe('copies forward within one word and one byte overlap', () =>
|
|
test([[0, 0, 1, 'one byte'], [0, 10, 11, 'eleven bytes'], [0, 15, 16, 'sixteen bytes']]));
|
|
});
|
|
});
|
|
// tslint:disable:max-file-line-count
|