add multiplexBatchSellTokenForToken, multiplexMultiHopSellTokenForToken, multiplex TokenForEth functions to metatransactions, add msgSender field to multiplex params

This commit is contained in:
Patrick Dowell 2023-02-20 18:06:11 -08:00
parent 865c1f05db
commit cdb94d1780
16 changed files with 337 additions and 65 deletions

@ -1 +1 @@
Subproject commit a2edd39db95df7e9dd3f9ef9edc8c55fefddb6df
Subproject commit 058d2004ac10cc8f194625fb107fb7a87c4e702d

View File

@ -15,6 +15,7 @@
pragma solidity ^0.6.5;
pragma experimental ABIEncoderV2;
import "@0x/contracts-erc20/src/IEtherToken.sol";
import "@0x/contracts-utils/contracts/src/v06/errors/LibRichErrorsV06.sol";
import "@0x/contracts-utils/contracts/src/v06/LibBytesV06.sol";
import "@0x/contracts-utils/contracts/src/v06/LibSafeMathV06.sol";
@ -27,6 +28,7 @@ import "../migrations/LibMigrate.sol";
import "../storage/LibMetaTransactionsStorage.sol";
import "./interfaces/IFeature.sol";
import "./interfaces/IMetaTransactionsFeatureV2.sol";
import "./interfaces/IMultiplexFeature.sol";
import "./interfaces/INativeOrdersFeature.sol";
import "./interfaces/ITransformERC20Feature.sol";
import "./libs/LibSignature.sol";
@ -63,8 +65,8 @@ contract MetaTransactionsFeatureV2 is
/// @dev Arguments for a `TransformERC20.transformERC20()` call.
struct ExternalTransformERC20Args {
IERC20TokenV06 inputToken;
IERC20TokenV06 outputToken;
IERC20Token inputToken;
IERC20Token outputToken;
uint256 inputTokenAmount;
uint256 minOutputTokenAmount;
ITransformERC20Feature.Transformation[] transformations;
@ -92,6 +94,9 @@ contract MetaTransactionsFeatureV2 is
"uint256 amount"
")"
);
/// @dev The WETH token contract.
IEtherToken private immutable WETH;
/// @dev Refunds up to `msg.value` leftover ETH at the end of the call.
modifier refundsAttachedEth() {
@ -110,7 +115,12 @@ contract MetaTransactionsFeatureV2 is
require(initialBalance <= address(this).balance, "MetaTransactionDataV2/ETH_LEAK");
}
constructor(address zeroExAddress) public FixinCommon() FixinEIP712(zeroExAddress) {}
constructor(
address zeroExAddress,
IEtherToken weth
) public FixinCommon() FixinEIP712(zeroExAddress) {
WETH = weth;
}
/// @dev Initialize and register this feature.
/// Should be delegatecalled by `Migrate.migrate()`.
@ -244,6 +254,14 @@ contract MetaTransactionsFeatureV2 is
returnResult = _executeFillLimitOrderCall(state);
} else if (state.selector == INativeOrdersFeature.fillRfqOrder.selector) {
returnResult = _executeFillRfqOrderCall(state);
} else if (state.selector == IMultiplexFeature.multiplexBatchSellTokenForToken.selector) {
returnResult = _executeMultiplexBatchSellTokenForTokenCall(state);
} else if (state.selector == IMultiplexFeature.multiplexBatchSellTokenForEth.selector) {
returnResult = _executeMultiplexBatchSellTokenForEthCall(state);
} else if (state.selector == IMultiplexFeature.multiplexMultiHopSellTokenForToken.selector) {
returnResult = _executeMultiplexMultiHopSellTokenForTokenCall(state);
} else if (state.selector == IMultiplexFeature.multiplexMultiHopSellTokenForEth.selector) {
returnResult = _executeMultiplexMultiHopSellTokenForEthCall(state);
} else {
LibMetaTransactionsRichErrors.MetaTransactionUnsupportedFunctionError(state.hash, state.selector).rrevert();
}
@ -410,7 +428,7 @@ contract MetaTransactionsFeatureV2 is
/// @dev Execute a `INativeOrdersFeature.fillRfqOrder()` meta-transaction call
/// by decoding the call args and translating the call to the internal
/// `INativeOrdersFeature._fillRfqOrder()` variant, where we can overrideunimpleme
/// `INativeOrdersFeature._fillRfqOrder()` variant, where we can override
/// the taker address.
function _executeFillRfqOrderCall(ExecuteState memory state) private returns (bytes memory returnResult) {
LibNativeOrder.RfqOrder memory order;
@ -438,6 +456,158 @@ contract MetaTransactionsFeatureV2 is
);
}
/// @dev Execute a `IMultiplexFeature.multiplexBatchSellTokenForToken()` meta-transaction
/// call by decoding the call args and translating the call to the internal
/// `IMultiplexFeature._multiplexBatchSell()` variant, where we can override the
/// msgSender address.
function _executeMultiplexBatchSellTokenForTokenCall(ExecuteState memory state) private returns (bytes memory returnResult) {
IERC20Token inputToken;
IERC20Token outputToken;
IMultiplexFeature.BatchSellSubcall[] memory calls;
uint256 sellAmount;
uint256 minBuyAmount;
bytes memory args = _extractArgumentsFromCallData(state.mtx.callData);
(inputToken, outputToken, calls, sellAmount, minBuyAmount) = abi.decode(
args,
(IERC20Token, IERC20Token, IMultiplexFeature.BatchSellSubcall[], uint256, uint256)
);
return
_callSelf(
state.hash,
abi.encodeWithSelector(
IMultiplexFeature._multiplexBatchSell.selector,
IMultiplexFeature.BatchSellParams({
inputToken: inputToken,
outputToken: outputToken,
sellAmount: sellAmount,
calls: calls,
useSelfBalance: false,
recipient: state.mtx.signer,
msgSender: state.mtx.signer
}),
minBuyAmount
)
);
}
/// @dev Execute a `IMultiplexFeature.multiplexBatchSellTokenForEth()` meta-transaction
/// call by decoding the call args and translating the call to the internal
/// `IMultiplexFeature._multiplexBatchSellTokenForEth()` variant, where we can override the
/// msgSender address.
function _executeMultiplexBatchSellTokenForEthCall(ExecuteState memory state) private returns (bytes memory returnResult) {
IERC20Token inputToken;
IMultiplexFeature.BatchSellSubcall[] memory calls;
uint256 sellAmount;
uint256 minBuyAmount;
bytes memory args = _extractArgumentsFromCallData(state.mtx.callData);
(inputToken, calls, sellAmount, minBuyAmount) = abi.decode(
args,
(IERC20Token, IMultiplexFeature.BatchSellSubcall[], uint256, uint256)
);
returnResult = _callSelf(
state.hash,
abi.encodeWithSelector(
IMultiplexFeature._multiplexBatchSell.selector,
IMultiplexFeature.BatchSellParams({
inputToken: inputToken,
outputToken: IERC20Token(WETH),
sellAmount: sellAmount,
calls: calls,
useSelfBalance: false,
recipient: address(this),
msgSender: state.mtx.signer
}),
minBuyAmount
)
);
// Unwrap and transfer WETH
uint256 boughtAmount = abi.decode(returnResult, (uint256));
WETH.withdraw(boughtAmount);
_transferEth(state.mtx.signer, boughtAmount);
}
/// @dev Execute a `IMultiplexFeature.multiplexMultiHopSellTokenForToken()` meta-transaction
/// call by decoding the call args and translating the call to the internal
/// `IMultiplexFeature._multiplexMultiHopSell()` variant, where we can override the
/// msgSender address.
function _executeMultiplexMultiHopSellTokenForTokenCall(ExecuteState memory state) private returns (bytes memory returnResult) {
address[] memory tokens;
IMultiplexFeature.MultiHopSellSubcall[] memory calls;
uint256 sellAmount;
uint256 minBuyAmount;
bytes memory args = _extractArgumentsFromCallData(state.mtx.callData);
(tokens, calls, sellAmount, minBuyAmount) = abi.decode(
args,
(address[], IMultiplexFeature.MultiHopSellSubcall[], uint256, uint256)
);
return
_callSelf(
state.hash,
abi.encodeWithSelector(
IMultiplexFeature._multiplexMultiHopSell.selector,
IMultiplexFeature.MultiHopSellParams({
tokens: tokens,
sellAmount: sellAmount,
calls: calls,
useSelfBalance: false,
recipient: state.mtx.signer,
msgSender: state.mtx.signer
}),
minBuyAmount
)
);
}
/// @dev Execute a `IMultiplexFeature.multiplexMultiHopSellTokenForEth()` meta-transaction
/// call by decoding the call args and translating the call to the internal
/// `IMultiplexFeature._multiplexMultiHopSellTokenForEth()` variant, where we can override the
/// msgSender address.
function _executeMultiplexMultiHopSellTokenForEthCall(ExecuteState memory state) private returns (bytes memory returnResult) {
address[] memory tokens;
IMultiplexFeature.MultiHopSellSubcall[] memory calls;
uint256 sellAmount;
uint256 minBuyAmount;
bytes memory args = _extractArgumentsFromCallData(state.mtx.callData);
(tokens, calls, sellAmount, minBuyAmount) = abi.decode(
args,
(address[], IMultiplexFeature.MultiHopSellSubcall[], uint256, uint256)
);
require(
tokens[tokens.length - 1] == address(WETH),
"MetaTransactionsFeature::multiplexMultiHopSellTokenForEth/NOT_WETH"
);
returnResult = _callSelf(
state.hash,
abi.encodeWithSelector(
IMultiplexFeature._multiplexMultiHopSell.selector,
IMultiplexFeature.MultiHopSellParams({
tokens: tokens,
sellAmount: sellAmount,
calls: calls,
useSelfBalance: false,
recipient: address(this),
msgSender: state.mtx.signer
}),
minBuyAmount
)
);
// Unwrap and transfer WETH
uint256 boughtAmount = abi.decode(returnResult, (uint256));
WETH.withdraw(boughtAmount);
_transferEth(state.mtx.signer, boughtAmount);
}
/// @dev Make an arbitrary internal, meta-transaction call.
/// Warning: Do not let unadulterated `callData` into this function.
function _callSelf(bytes32 hash, bytes memory callData) private returns (bytes memory returnResult) {

View File

@ -70,6 +70,7 @@ contract UniswapV3Feature is IFeature, IUniswapV3Feature, FixinCommon, FixinToke
_registerFeatureFunction(this.sellEthForTokenToUniswapV3.selector);
_registerFeatureFunction(this.sellTokenForEthToUniswapV3.selector);
_registerFeatureFunction(this.sellTokenForTokenToUniswapV3.selector);
_registerFeatureFunction(this._sellTokenForTokenToUniswapV3.selector);
_registerFeatureFunction(this._sellHeldTokenForTokenToUniswapV3.selector);
_registerFeatureFunction(this.uniswapV3SwapCallback.selector);
return LibMigrate.MIGRATE_SUCCESS;
@ -139,6 +140,23 @@ contract UniswapV3Feature is IFeature, IUniswapV3Feature, FixinCommon, FixinToke
buyAmount = _swap(encodedPath, sellAmount, minBuyAmount, msg.sender, _normalizeRecipient(recipient));
}
/// @dev Sell a token for another token directly against uniswap v3. Internal variant.
/// @param encodedPath Uniswap-encoded path.
/// @param sellAmount amount of the first token in the path to sell.
/// @param minBuyAmount Minimum amount of the last token in the path to buy.
/// @param recipient The recipient of the bought tokens. Can be zero for payer.
/// @param payer The address to pull the sold tokens from.
/// @return buyAmount Amount of the last token in the path bought.
function _sellTokenForTokenToUniswapV3(
bytes memory encodedPath,
uint256 sellAmount,
uint256 minBuyAmount,
address recipient,
address payer
) public override onlySelf returns (uint256 buyAmount) {
buyAmount = _swap(encodedPath, sellAmount, minBuyAmount, payer, _normalizeRecipient(recipient, payer));
}
/// @dev Sell a token for another token directly against uniswap v3.
/// Private variant, uses tokens held by `address(this)`.
/// @param encodedPath Uniswap-encoded path.
@ -337,8 +355,13 @@ contract UniswapV3Feature is IFeature, IUniswapV3Feature, FixinCommon, FixinToke
}
}
// Convert null address values to alternative address.
function _normalizeRecipient(address recipient, address alternative) private pure returns (address payable normalizedRecipient) {
return recipient == address(0) ? payable(alternative) : payable(recipient);
}
// Convert null address values to msg.sender.
function _normalizeRecipient(address recipient) private view returns (address payable normalizedRecipient) {
return recipient == address(0) ? msg.sender : payable(recipient);
return _normalizeRecipient(recipient, msg.sender);
}
}

View File

@ -15,7 +15,7 @@
pragma solidity ^0.6.5;
pragma experimental ABIEncoderV2;
import "@0x/contracts-erc20/contracts/src/v06/IERC20TokenV06.sol";
import "@0x/contracts-erc20/src/IERC20Token.sol";
import "../libs/LibSignature.sol";
/// @dev Meta-transactions feature.
@ -40,7 +40,7 @@ interface IMetaTransactionsFeatureV2 {
// Encoded call data to a function on the exchange proxy.
bytes callData;
// ERC20 fee `signer` pays `sender`.
IERC20TokenV06 feeToken;
IERC20Token feeToken;
// ERC20 fees.
MetaTransactionFeeData[] fees;
}

View File

@ -46,6 +46,8 @@ interface IMultiplexFeature {
bool useSelfBalance;
// The recipient of the bought output tokens.
address recipient;
// The sender of the transaction.
address msgSender;
}
// Represents a constituent call of a batch sell.
@ -75,6 +77,8 @@ interface IMultiplexFeature {
bool useSelfBalance;
// The recipient of the bought output tokens.
address recipient;
// The sender of the transaction.
address msgSender;
}
// Represents a constituent call of a multi-hop sell.
@ -153,6 +157,17 @@ interface IMultiplexFeature {
uint256 minBuyAmount
) external returns (uint256 boughtAmount);
/// @dev Executes a multiplex BatchSell using the given
/// parameters. Internal only.
/// @param params The parameters for the BatchSell.
/// @param minBuyAmount The minimum amount of `params.outputToken`
/// that must be bought for this function to not revert.
/// @return boughtAmount The amount of `params.outputToken` bought.
function _multiplexBatchSell(
BatchSellParams memory params,
uint256 minBuyAmount
) external returns (uint256 boughtAmount);
/// @dev Sells attached ETH via the given sequence of tokens
/// and calls. `tokens[0]` must be WETH.
/// The last token in `tokens` is the output token that
@ -204,4 +219,15 @@ interface IMultiplexFeature {
uint256 sellAmount,
uint256 minBuyAmount
) external returns (uint256 boughtAmount);
/// @dev Executes a multiplex MultiHopSell using the given
/// parameters. Internal only.
/// @param params The parameters for the MultiHopSell.
/// @param minBuyAmount The minimum amount of the output token
/// that must be bought for this function to not revert.
/// @return boughtAmount The amount of the output token bought.
function _multiplexMultiHopSell(
MultiHopSellParams memory params,
uint256 minBuyAmount
) external returns (uint256 boughtAmount);
}

View File

@ -54,6 +54,21 @@ interface IUniswapV3Feature {
address recipient
) external returns (uint256 buyAmount);
/// @dev Sell a token for another token directly against uniswap v3. Internal variant.
/// @param encodedPath Uniswap-encoded path.
/// @param sellAmount amount of the first token in the path to sell.
/// @param minBuyAmount Minimum amount of the last token in the path to buy.
/// @param recipient The recipient of the bought tokens. Can be zero for payer.
/// @param payer The address to pull the sold tokens from.
/// @return buyAmount Amount of the last token in the path bought.
function _sellTokenForTokenToUniswapV3(
bytes memory encodedPath,
uint256 sellAmount,
uint256 minBuyAmount,
address recipient,
address payer
) external returns (uint256 buyAmount);
/// @dev Sell a token for another token directly against uniswap v3.
/// Private variant, uses tokens held by `address(this)`.
/// @param encodedPath Uniswap-encoded path.

View File

@ -80,9 +80,11 @@ contract MultiplexFeature is
_registerFeatureFunction(this.multiplexBatchSellEthForToken.selector);
_registerFeatureFunction(this.multiplexBatchSellTokenForEth.selector);
_registerFeatureFunction(this.multiplexBatchSellTokenForToken.selector);
_registerFeatureFunction(this._multiplexBatchSell.selector);
_registerFeatureFunction(this.multiplexMultiHopSellEthForToken.selector);
_registerFeatureFunction(this.multiplexMultiHopSellTokenForEth.selector);
_registerFeatureFunction(this.multiplexMultiHopSellTokenForToken.selector);
_registerFeatureFunction(this._multiplexMultiHopSell.selector);
return LibMigrate.MIGRATE_SUCCESS;
}
@ -103,14 +105,15 @@ contract MultiplexFeature is
// WETH is now held by this contract,
// so `useSelfBalance` is true.
return
_multiplexBatchSell(
_multiplexBatchSellPrivate(
BatchSellParams({
inputToken: WETH,
outputToken: outputToken,
sellAmount: msg.value,
calls: calls,
useSelfBalance: true,
recipient: msg.sender
recipient: msg.sender,
msgSender: msg.sender
}),
minBuyAmount
);
@ -133,14 +136,15 @@ contract MultiplexFeature is
// The outputToken is implicitly WETH. The `recipient`
// of the WETH is set to this contract, since we
// must unwrap the WETH and transfer the resulting ETH.
boughtAmount = _multiplexBatchSell(
boughtAmount = _multiplexBatchSellPrivate(
BatchSellParams({
inputToken: inputToken,
outputToken: WETH,
sellAmount: sellAmount,
calls: calls,
useSelfBalance: false,
recipient: address(this)
recipient: address(this),
msgSender: msg.sender
}),
minBuyAmount
);
@ -167,26 +171,40 @@ contract MultiplexFeature is
uint256 minBuyAmount
) public override returns (uint256 boughtAmount) {
return
_multiplexBatchSell(
_multiplexBatchSellPrivate(
BatchSellParams({
inputToken: inputToken,
outputToken: outputToken,
sellAmount: sellAmount,
calls: calls,
useSelfBalance: false,
recipient: msg.sender
recipient: msg.sender,
msgSender: msg.sender
}),
minBuyAmount
);
}
/// @dev Executes a batch sell and checks that at least
/// `minBuyAmount` of `outputToken` was bought. Internal variant.
/// @param params Batch sell parameters.
/// @param minBuyAmount The minimum amount of `outputToken` that
/// must be bought for this function to not revert.
/// @return boughtAmount The amount of `outputToken` bought.
function _multiplexBatchSell(
BatchSellParams memory params,
uint256 minBuyAmount
) public override onlySelf returns (uint256 boughtAmount) {
return _multiplexBatchSellPrivate(params, minBuyAmount);
}
/// @dev Executes a batch sell and checks that at least
/// `minBuyAmount` of `outputToken` was bought.
/// @param params Batch sell parameters.
/// @param minBuyAmount The minimum amount of `outputToken` that
/// must be bought for this function to not revert.
/// @return boughtAmount The amount of `outputToken` bought.
function _multiplexBatchSell(
function _multiplexBatchSellPrivate(
BatchSellParams memory params,
uint256 minBuyAmount
) private returns (uint256 boughtAmount) {
@ -226,13 +244,14 @@ contract MultiplexFeature is
// WETH is now held by this contract,
// so `useSelfBalance` is true.
return
_multiplexMultiHopSell(
_multiplexMultiHopSellPrivate(
MultiHopSellParams({
tokens: tokens,
sellAmount: msg.value,
calls: calls,
useSelfBalance: true,
recipient: msg.sender
recipient: msg.sender,
msgSender: msg.sender
}),
minBuyAmount
);
@ -262,13 +281,14 @@ contract MultiplexFeature is
);
// The `recipient of the WETH is set to this contract, since
// we must unwrap the WETH and transfer the resulting ETH.
boughtAmount = _multiplexMultiHopSell(
boughtAmount = _multiplexMultiHopSellPrivate(
MultiHopSellParams({
tokens: tokens,
sellAmount: sellAmount,
calls: calls,
useSelfBalance: false,
recipient: address(this)
recipient: address(this),
msgSender: msg.sender
}),
minBuyAmount
);
@ -297,25 +317,38 @@ contract MultiplexFeature is
uint256 minBuyAmount
) public override returns (uint256 boughtAmount) {
return
_multiplexMultiHopSell(
_multiplexMultiHopSellPrivate(
MultiHopSellParams({
tokens: tokens,
sellAmount: sellAmount,
calls: calls,
useSelfBalance: false,
recipient: msg.sender
recipient: msg.sender,
msgSender: msg.sender
}),
minBuyAmount
);
}
/// @dev Executes a multi-hop sell. Internal variant.
/// @param params Multi-hop sell parameters.
/// @param minBuyAmount The minimum amount of output tokens that
/// must be bought for this function to not revert.
/// @return boughtAmount The amount of output tokens bought.
function _multiplexMultiHopSell(
MultiHopSellParams memory params,
uint256 minBuyAmount
) public override onlySelf returns (uint256 boughtAmount) {
return _multiplexMultiHopSellPrivate(params, minBuyAmount);
}
/// @dev Executes a multi-hop sell and checks that at least
/// `minBuyAmount` of output tokens were bought.
/// @param params Multi-hop sell parameters.
/// @param minBuyAmount The minimum amount of output tokens that
/// must be bought for this function to not revert.
/// @return boughtAmount The amount of output tokens bought.
function _multiplexMultiHopSell(
function _multiplexMultiHopSellPrivate(
MultiHopSellParams memory params,
uint256 minBuyAmount
) private returns (uint256 boughtAmount) {
@ -387,14 +420,14 @@ contract MultiplexFeature is
// amount of the multi-hop fill.
state.outputTokenAmount = params.sellAmount;
// The first call may expect the input tokens to be held by
// `msg.sender`, `address(this)`, or some other address.
// `msgSender`, `address(this)`, or some other address.
// Compute the expected address and transfer the input tokens
// there if necessary.
state.from = _computeHopTarget(params, 0);
// If the input tokens are currently held by `msg.sender` but
// If the input tokens are currently held by `msgSender` but
// the first hop expects them elsewhere, perform a `transferFrom`.
if (!params.useSelfBalance && state.from != msg.sender) {
_transferERC20TokensFrom(IERC20Token(params.tokens[0]), msg.sender, state.from, params.sellAmount);
if (!params.useSelfBalance && state.from != params.msgSender) {
_transferERC20TokensFrom(IERC20Token(params.tokens[0]), params.msgSender, state.from, params.sellAmount);
}
// If the input tokens are currently held by `address(this)` but
// the first hop expects them elsewhere, perform a `transfer`.
@ -411,7 +444,7 @@ contract MultiplexFeature is
if (subcall.id == MultiplexSubcall.UniswapV2) {
_multiHopSellUniswapV2(state, params, subcall.data);
} else if (subcall.id == MultiplexSubcall.UniswapV3) {
_multiHopSellUniswapV3(state, subcall.data);
_multiHopSellUniswapV3(state, params, subcall.data);
} else if (subcall.id == MultiplexSubcall.LiquidityProvider) {
_multiHopSellLiquidityProvider(state, params, subcall.data);
} else if (subcall.id == MultiplexSubcall.BatchSell) {
@ -443,6 +476,8 @@ contract MultiplexFeature is
// Likewise, the recipient of the multi-hop sell is
// equal to the recipient of its containing batch sell.
multiHopParams.recipient = params.recipient;
// The msgSender is the same too.
multiHopParams.msgSender = params.msgSender;
// Execute the nested multi-hop sell.
uint256 outputTokenAmount = _executeMultiHopSell(multiHopParams).outputTokenAmount;
// Increment the sold and bought amounts.
@ -469,7 +504,7 @@ contract MultiplexFeature is
// If the nested batch sell is the first hop
// and `useSelfBalance` for the containing multi-
// hop sell is false, the nested batch sell should
// pull tokens from `msg.sender` (so `batchSellParams.useSelfBalance`
// pull tokens from `msgSender` (so `batchSellParams.useSelfBalance`
// should be false). Otherwise `batchSellParams.useSelfBalance`
// should be true.
batchSellParams.useSelfBalance = state.hopIndex > 0 || params.useSelfBalance;
@ -477,6 +512,8 @@ contract MultiplexFeature is
// that should receive the output tokens of the
// batch sell.
batchSellParams.recipient = state.to;
// msgSender shound be the same too.
batchSellParams.msgSender = params.msgSender;
// Execute the nested batch sell.
state.outputTokenAmount = _executeBatchSell(batchSellParams).boughtAmount;
}
@ -509,25 +546,25 @@ contract MultiplexFeature is
// UniswapV3 uses a callback to pull in the tokens being
// sold to it. The callback implemented in `UniswapV3Feature`
// can either:
// - call `transferFrom` to move tokens from `msg.sender` to the
// - call `transferFrom` to move tokens from `msgSender` to the
// UniswapV3 pool, or
// - call `transfer` to move tokens from `address(this)` to the
// UniswapV3 pool.
// A nested batch sell is similar, in that it can either:
// - use tokens from `msg.sender`, or
// - use tokens from `msgSender`, or
// - use tokens held by `address(this)`.
// Suppose UniswapV3/BatchSell is the first call in the multi-hop
// path. The input tokens are either held by `msg.sender`,
// path. The input tokens are either held by `msgSender`,
// or in the case of `multiplexMultiHopSellEthForToken` WETH is
// held by `address(this)`. The target is set accordingly.
// If this is _not_ the first call in the multi-hop path, we
// are dealing with an "intermediate" token in the multi-hop path,
// which `msg.sender` may not have an allowance set for. Thus
// which `msgSender` may not have an allowance set for. Thus
// target must be set to `address(this)` for `i > 0`.
if (i == 0 && !params.useSelfBalance) {
target = msg.sender;
target = params.msgSender;
} else {
target = address(this);
}

View File

@ -67,7 +67,7 @@ abstract contract MultiplexLiquidityProvider is FixinCommon, FixinTokenSpender {
_transferERC20Tokens(params.inputToken, provider, sellAmount);
} else {
// Otherwise, transfer the input tokens from `msg.sender`.
_transferERC20TokensFrom(params.inputToken, msg.sender, provider, sellAmount);
_transferERC20TokensFrom(params.inputToken, params.msgSender, provider, sellAmount);
}
// Cache the recipient's balance of the output token.
uint256 balanceBefore = params.outputToken.balanceOf(params.recipient);

View File

@ -55,7 +55,7 @@ abstract contract MultiplexOtc is FixinEIP712 {
order,
signature,
sellAmount.safeDowncastToUint128(),
msg.sender,
params.msgSender,
params.useSelfBalance,
params.recipient
)

View File

@ -54,7 +54,7 @@ abstract contract MultiplexRfq is FixinEIP712 {
order,
signature,
sellAmount.safeDowncastToUint128(),
msg.sender,
params.msgSender,
params.useSelfBalance,
params.recipient
)

View File

@ -30,8 +30,8 @@ abstract contract MultiplexTransformERC20 {
) internal {
ITransformERC20Feature.TransformERC20Args memory args;
// We want the TransformedERC20 event to have
// `msg.sender` as the taker.
args.taker = msg.sender;
// `msgSender` as the taker.
args.taker = payable(params.msgSender);
args.inputToken = params.inputToken;
args.outputToken = params.outputToken;
args.inputTokenAmount = sellAmount;

View File

@ -77,7 +77,7 @@ abstract contract MultiplexUniswapV2 is FixinCommon, FixinTokenSpender {
if (params.useSelfBalance) {
_transferERC20Tokens(IERC20Token(tokens[0]), firstPairAddress, sellAmount);
} else {
_transferERC20TokensFrom(IERC20Token(tokens[0]), msg.sender, firstPairAddress, sellAmount);
_transferERC20TokensFrom(IERC20Token(tokens[0]), params.msgSender, firstPairAddress, sellAmount);
}
// Execute the Uniswap/Sushiswap trade.
return _sellToUniswapV2(tokens, sellAmount, isSushi, firstPairAddress, params.recipient);

View File

@ -45,16 +45,16 @@ abstract contract MultiplexUniswapV3 is FixinTokenSpender {
)
);
} else {
// Otherwise, we self-delegatecall the normal variant
// `sellTokenForTokenToUniswapV3`, which pulls the input token
// from `msg.sender`.
// Otherwise, we self-delegatecall `_sellTokenForTokenToUniswapV3`,
// which pulls the input token from a specified `payer`.
(success, resultData) = address(this).delegatecall(
abi.encodeWithSelector(
IUniswapV3Feature.sellTokenForTokenToUniswapV3.selector,
IUniswapV3Feature._sellTokenForTokenToUniswapV3.selector,
wrappedCallData,
sellAmount,
0,
params.recipient
params.recipient,
params.msgSender
)
);
}
@ -69,6 +69,7 @@ abstract contract MultiplexUniswapV3 is FixinTokenSpender {
function _multiHopSellUniswapV3(
IMultiplexFeature.MultiHopSellState memory state,
IMultiplexFeature.MultiHopSellParams memory params,
bytes memory wrappedCallData
) internal {
bool success;
@ -87,16 +88,16 @@ abstract contract MultiplexUniswapV3 is FixinTokenSpender {
)
);
} else {
// Otherwise, we self-delegatecall the normal variant
// `sellTokenForTokenToUniswapV3`, which pulls the input token
// from `msg.sender`.
// Otherwise, we self-delegatecall `_sellTokenForTokenToUniswapV3`,
// which pulls the input token from `msgSender`.
(success, resultData) = address(this).delegatecall(
abi.encodeWithSelector(
IUniswapV3Feature.sellTokenForTokenToUniswapV3.selector,
IUniswapV3Feature._sellTokenForTokenToUniswapV3.selector,
wrappedCallData,
state.outputTokenAmount,
0,
state.to
state.to,
params.msgSender
)
);
}

View File

@ -26,16 +26,16 @@ import "../contracts/src/features/libs/LibSignature.sol";
import "src/features/libs/LibNativeOrder.sol";
import "../contracts/test/tokens/TestMintableERC20Token.sol";
import "@0x/contracts-utils/contracts/src/v06/errors/LibRichErrorsV06.sol";
import "@0x/contracts-erc20/contracts/src/v06/IEtherTokenV06.sol";
import "@0x/contracts-erc20/src/IEtherToken.sol";
contract MetaTransactionTest is BaseTest, TestUtils {
DeployZeroEx.ZeroExDeployed zeroExDeployed;
address private constant ZERO_ADDRESS = 0x0000000000000000000000000000000000000000;
address private constant USER_ADDRESS = 0x6dc3a54FeAE57B65d185A7B159c5d3FA7fD7FD0F;
uint256 private constant USER_KEY = 0x1fc1630343b31e60b7a197a53149ca571ed9d9791e2833337bbd8110c30710ec;
IEtherTokenV06 private wethToken;
IERC20TokenV06 private usdcToken;
IERC20TokenV06 private zrxToken;
IEtherToken private wethToken;
IERC20Token private usdcToken;
IERC20Token private zrxToken;
uint256 private constant oneEth = 1e18;
address private signerAddress;
uint256 private signerKey;
@ -47,8 +47,8 @@ contract MetaTransactionTest is BaseTest, TestUtils {
(signerAddress, signerKey) = getSigner();
zeroExDeployed = new DeployZeroEx().deployZeroEx();
wethToken = zeroExDeployed.weth;
usdcToken = IERC20TokenV06(address(new TestMintableERC20Token()));
zrxToken = IERC20TokenV06(address(new TestMintableERC20Token()));
usdcToken = IERC20Token(address(new TestMintableERC20Token()));
zrxToken = IERC20Token(address(new TestMintableERC20Token()));
transformerNonce = zeroExDeployed.transformerDeployer.nonce();
vm.prank(zeroExDeployed.transformerDeployer.authorities(0));

View File

@ -204,7 +204,7 @@ contract DeployZeroEx is Test {
);
ZERO_EX_DEPLOYED.features.fundRecoveryFeature = new FundRecoveryFeature();
ZERO_EX_DEPLOYED.features.metaTransactionsFeature = new MetaTransactionsFeature(address(ZERO_EX));
ZERO_EX_DEPLOYED.features.metaTransactionsFeatureV2 = new MetaTransactionsFeatureV2(address(ZERO_EX));
ZERO_EX_DEPLOYED.features.metaTransactionsFeatureV2 = new MetaTransactionsFeatureV2(address(ZERO_EX), ZERO_EX_DEPLOYED.weth);
ZERO_EX_DEPLOYED.features.erc1155OrdersFeature = new ERC1155OrdersFeature(
address(ZERO_EX),
ZERO_EX_DEPLOYED.weth

View File

@ -22,7 +22,7 @@ import "src/transformers/LibERC20Transformer.sol";
import "src/features/libs/LibSignature.sol";
import "src/features/libs/LibNativeOrder.sol";
import "../../contracts/test/tokens/TestMintableERC20Token.sol";
import "@0x/contracts-erc20/contracts/src/v06/IEtherTokenV06.sol";
import "@0x/contracts-erc20/src/IEtherToken.sol";
contract TestUtils is Test {
address private constant ZERO_ADDRESS = 0x0000000000000000000000000000000000000000;
@ -54,8 +54,8 @@ contract TestUtils is Test {
function makeTestRfqOrder(
DeployZeroEx.ZeroExDeployed memory zeroExDeployed,
IERC20TokenV06 makerToken,
IERC20TokenV06 takerToken,
IERC20Token makerToken,
IERC20Token takerToken,
address makerAddress,
address takerAddress,
uint256 makerKey
@ -93,8 +93,8 @@ contract TestUtils is Test {
function makeTestLimitOrder(
DeployZeroEx.ZeroExDeployed memory zeroExDeployed,
IERC20TokenV06 makerToken,
IERC20TokenV06 takerToken,
IERC20Token makerToken,
IERC20Token takerToken,
address makerAddress,
address takerAddress,
uint256 makerKey
@ -133,8 +133,8 @@ contract TestUtils is Test {
function transformERC20Call(
DeployZeroEx.ZeroExDeployed memory zeroExDeployed,
IERC20TokenV06 makerToken,
IERC20TokenV06 takerToken,
IERC20Token makerToken,
IERC20Token takerToken,
address takerAddress,
uint256 transformerNonce
) public returns (bytes memory) {
@ -158,11 +158,11 @@ contract TestUtils is Test {
);
}
function mintTo(IERC20TokenV06 token, address recipient, uint256 amount) public {
function mintTo(IERC20Token token, address recipient, uint256 amount) public {
TestMintableERC20Token(address(token)).mint(recipient, amount);
}
function mintToWETH(IEtherTokenV06 wethToken, address recipient, uint256 amount) public {
function mintToWETH(IEtherToken wethToken, address recipient, uint256 amount) public {
wethToken.deposit{value: amount}();
WETH9V06(payable(address(wethToken))).transfer(recipient, amount);
}