protocol/contracts/utils/test/lib_bytes.ts
F. Eugene Aumson f11d8a5bd8
@0x/order-utils refactors for v3: orderParsingUtils, signatureUtils, orderHashUtils, RevertErrors, transactionHashUtils (#2321)
* move orderParsingUtils from order-utils to connect

* Remove many functions from signatureUtils

Removed from the exported object, that is.  All of them are used in
other existing code, so they were all moved to be as local to their
usage as possible.

* remove orderHashUtils.isValidOrderHash()

* Move all *RevertErrors from order-utils...

...into their respective @0x/contracts- packages.

* Refactor @0x/order-utils' orderHashUtils away

- Move existing routines into @0x/contracts-test-utils

- Migrate non-contract-test callers to a newly-exposed getOrderHash()
method in DevUtils.

* Move all *RevertErrors from @0x/utils...

...into their respective @0x/contracts- packages.

* rm transactionHashUtils.isValidTransactionHash()

* DevUtils.sol: Fail yarn test if too big to deploy

* Refactor @0x/order-utils transactionHashUtils away

- Move existing routines into @0x/contracts-test-utils

- Migrate non-contract-test callers to a newly-exposed
getTransactionHash() method in DevUtils.

* Consolidate `Removed export...` CHANGELOG entries

* Rm EthBalanceChecker from devutils wrapper exports

* Stop importing from '.' or '.../src'

* fix builds

* fix prettier; dangling promise

* increase max bundle size
2019-11-14 17:14:24 -05:00

788 lines
42 KiB
TypeScript

import { blockchainTests, constants, expect } from '@0x/contracts-test-utils';
import { BigNumber } from '@0x/utils';
import BN = require('bn.js');
import * as ethUtil from 'ethereumjs-util';
import * as _ from 'lodash';
import LibBytesRevertErrors = require('../src/lib_bytes_revert_errors');
import { artifacts } from './artifacts';
import { TestLibBytesContract } from './wrappers';
// BUG: Ideally we would use fromHex(memory).toString('hex')
// https://github.com/Microsoft/TypeScript/issues/23155
const toHex = (buf: Uint8Array): string => buf.reduce((a, v) => a + `00${v.toString(16)}`.slice(-2), '0x');
const fromHex = (str: string): Uint8Array => Uint8Array.from(Buffer.from(str.slice(2), 'hex'));
blockchainTests('LibBytes', env => {
let libBytes: TestLibBytesContract;
const byteArrayShorterThan32Bytes = '0x012345';
const byteArrayShorterThan20Bytes = byteArrayShorterThan32Bytes;
const byteArrayLongerThan32Bytes =
'0x0123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef';
const byteArrayLongerThan32BytesFirstBytesSwapped =
'0x2301456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef';
const byteArrayLongerThan32BytesLastBytesSwapped =
'0x0123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef0123456789abefcd';
let testAddress: string;
let testAddressB: string;
const testBytes32 = '0x102030405060708090a0b0c0d0e0f0102030405060708090a0b0c0d0e0f01020';
const testBytes32B = '0x534877abd8443578526845cdfef020047528759477fedef87346527659aced32';
const testUint256 = new BigNumber(testBytes32, 16);
const testUint256B = new BigNumber(testBytes32B, 16);
const testBytes4 = '0xabcdef12';
const testByte = '0xab';
before(async () => {
// Setup accounts & addresses
const accounts = await env.getAccountAddressesAsync();
testAddress = accounts[1];
testAddressB = accounts[2];
// Deploy LibBytes
libBytes = await TestLibBytesContract.deployFrom0xArtifactAsync(
artifacts.TestLibBytes,
env.provider,
env.txDefaults,
artifacts,
);
// Verify lengths of test data
const byteArrayShorterThan32BytesLength = ethUtil.toBuffer(byteArrayShorterThan32Bytes).byteLength;
expect(byteArrayShorterThan32BytesLength).to.be.lessThan(32);
const byteArrayLongerThan32BytesLength = ethUtil.toBuffer(byteArrayLongerThan32Bytes).byteLength;
expect(byteArrayLongerThan32BytesLength).to.be.greaterThan(32);
const testBytes32Length = ethUtil.toBuffer(testBytes32).byteLength;
expect(testBytes32Length).to.be.equal(32);
});
describe('popLastByte', () => {
it('should revert if length is 0', async () => {
const expectedError = new LibBytesRevertErrors.InvalidByteOperationError(
LibBytesRevertErrors.InvalidByteOperationErrorCodes.LengthGreaterThanZeroRequired,
constants.ZERO_AMOUNT,
constants.ZERO_AMOUNT,
);
return expect(libBytes.publicPopLastByte(constants.NULL_BYTES).callAsync()).to.revertWith(expectedError);
});
it('should pop the last byte from the input and return it when array holds more than 1 byte', async () => {
const [newBytes, poppedByte] = await libBytes.publicPopLastByte(byteArrayLongerThan32Bytes).callAsync();
const expectedNewBytes = byteArrayLongerThan32Bytes.slice(0, -2);
const expectedPoppedByte = `0x${byteArrayLongerThan32Bytes.slice(-2)}`;
expect(newBytes).to.equal(expectedNewBytes);
expect(poppedByte).to.equal(expectedPoppedByte);
});
it('should pop the last byte from the input and return it when array is exactly 1 byte', async () => {
const [newBytes, poppedByte] = await libBytes.publicPopLastByte(testByte).callAsync();
const expectedNewBytes = '0x';
expect(newBytes).to.equal(expectedNewBytes);
return expect(poppedByte).to.be.equal(testByte);
});
});
describe('equals', () => {
it('should return true if byte arrays are equal (both arrays < 32 bytes)', async () => {
const isEqual = await libBytes
.publicEquals(byteArrayShorterThan32Bytes, byteArrayShorterThan32Bytes)
.callAsync();
return expect(isEqual).to.be.true();
});
it('should return true if byte arrays are equal (both arrays > 32 bytes)', async () => {
const isEqual = await libBytes
.publicEquals(byteArrayLongerThan32Bytes, byteArrayLongerThan32Bytes)
.callAsync();
return expect(isEqual).to.be.true();
});
it('should return false if byte arrays are not equal (first array < 32 bytes, second array > 32 bytes)', async () => {
const isEqual = await libBytes
.publicEquals(byteArrayShorterThan32Bytes, byteArrayLongerThan32Bytes)
.callAsync();
return expect(isEqual).to.be.false();
});
it('should return false if byte arrays are not equal (first array > 32 bytes, second array < 32 bytes)', async () => {
const isEqual = await libBytes
.publicEquals(byteArrayLongerThan32Bytes, byteArrayShorterThan32Bytes)
.callAsync();
return expect(isEqual).to.be.false();
});
it('should return false if byte arrays are not equal (same length, but a byte in first word differs)', async () => {
const isEqual = await libBytes
.publicEquals(byteArrayLongerThan32BytesFirstBytesSwapped, byteArrayLongerThan32Bytes)
.callAsync();
return expect(isEqual).to.be.false();
});
it('should return false if byte arrays are not equal (same length, but a byte in last word differs)', async () => {
const isEqual = await libBytes
.publicEquals(byteArrayLongerThan32BytesLastBytesSwapped, byteArrayLongerThan32Bytes)
.callAsync();
return expect(isEqual).to.be.false();
});
describe('should ignore trailing data', () => {
it('should return true when both < 32 bytes', async () => {
const isEqual = await libBytes.publicEqualsPop1('0x0102', '0x0103').callAsync();
return expect(isEqual).to.be.true();
});
});
});
describe('readAddress', () => {
it('should successfully read address when the address takes up the whole array', async () => {
const byteArray = ethUtil.addHexPrefix(testAddress);
const testAddressOffset = new BigNumber(0);
const address = await libBytes.publicReadAddress(byteArray, testAddressOffset).callAsync();
return expect(address).to.be.equal(testAddress);
});
it('should successfully read address when it is offset in the array', async () => {
const addressByteArrayBuffer = ethUtil.toBuffer(testAddress);
const prefixByteArrayBuffer = ethUtil.toBuffer('0xabcdef');
const combinedByteArrayBuffer = Buffer.concat([prefixByteArrayBuffer, addressByteArrayBuffer]);
const combinedByteArray = ethUtil.bufferToHex(combinedByteArrayBuffer);
const testAddressOffset = new BigNumber(prefixByteArrayBuffer.byteLength);
const address = await libBytes.publicReadAddress(combinedByteArray, testAddressOffset).callAsync();
return expect(address).to.be.equal(testAddress);
});
it('should fail if the byte array is too short to hold an address', async () => {
const shortByteArray = '0xabcdef';
const offset = new BigNumber(0);
const expectedError = new LibBytesRevertErrors.InvalidByteOperationError(
LibBytesRevertErrors.InvalidByteOperationErrorCodes.LengthGreaterThanOrEqualsTwentyRequired,
new BigNumber(3),
new BigNumber(20),
);
return expect(libBytes.publicReadAddress(shortByteArray, offset).callAsync()).to.revertWith(expectedError);
});
it('should fail if the length between the offset and end of the byte array is too short to hold an address', async () => {
const byteArray = testAddress;
const badOffset = new BigNumber(ethUtil.toBuffer(byteArray).byteLength);
const expectedError = new LibBytesRevertErrors.InvalidByteOperationError(
LibBytesRevertErrors.InvalidByteOperationErrorCodes.LengthGreaterThanOrEqualsTwentyRequired,
new BigNumber(20),
new BigNumber(40),
);
return expect(libBytes.publicReadAddress(byteArray, badOffset).callAsync()).to.revertWith(expectedError);
});
});
describe('writeAddress', () => {
it('should successfully write address when the address takes up the whole array', async () => {
const byteArray = testAddress;
const testAddressOffset = new BigNumber(0);
const newByteArray = await libBytes
.publicWriteAddress(byteArray, testAddressOffset, testAddressB)
.callAsync();
return expect(newByteArray).to.be.equal(testAddressB);
});
it('should successfully write address when it is offset in the array', async () => {
const addressByteArrayBuffer = ethUtil.toBuffer(testAddress);
const prefixByteArrayBuffer = ethUtil.toBuffer('0xabcdef');
const combinedByteArrayBuffer = Buffer.concat([prefixByteArrayBuffer, addressByteArrayBuffer]);
const combinedByteArray = ethUtil.bufferToHex(combinedByteArrayBuffer);
const testAddressOffset = new BigNumber(prefixByteArrayBuffer.byteLength);
const newByteArray = await libBytes
.publicWriteAddress(combinedByteArray, testAddressOffset, testAddressB)
.callAsync();
const newByteArrayBuffer = ethUtil.toBuffer(newByteArray);
const addressFromOffsetBuffer = newByteArrayBuffer.slice(prefixByteArrayBuffer.byteLength);
const addressFromOffset = ethUtil.addHexPrefix(ethUtil.bufferToHex(addressFromOffsetBuffer));
return expect(addressFromOffset).to.be.equal(testAddressB);
});
it('should fail if the byte array is too short to hold an address', async () => {
const offset = new BigNumber(0);
const byteLen = ethUtil.toBuffer(byteArrayShorterThan20Bytes).byteLength;
const expectedError = new LibBytesRevertErrors.InvalidByteOperationError(
LibBytesRevertErrors.InvalidByteOperationErrorCodes.LengthGreaterThanOrEqualsTwentyRequired,
new BigNumber(byteLen),
new BigNumber(20),
);
return expect(
libBytes.publicWriteAddress(byteArrayShorterThan20Bytes, offset, testAddress).callAsync(),
).to.revertWith(expectedError);
});
it('should fail if the length between the offset and end of the byte array is too short to hold an address', async () => {
const byteArray = byteArrayLongerThan32Bytes;
const badOffset = new BigNumber(ethUtil.toBuffer(byteArray).byteLength);
const expectedError = new LibBytesRevertErrors.InvalidByteOperationError(
LibBytesRevertErrors.InvalidByteOperationErrorCodes.LengthGreaterThanOrEqualsTwentyRequired,
badOffset,
badOffset.plus(new BigNumber(20)),
);
return expect(libBytes.publicWriteAddress(byteArray, badOffset, testAddress).callAsync()).to.revertWith(
expectedError,
);
});
});
describe('readBytes32', () => {
it('should successfully read bytes32 when the bytes32 takes up the whole array', async () => {
const testBytes32Offset = new BigNumber(0);
const bytes32 = await libBytes.publicReadBytes32(testBytes32, testBytes32Offset).callAsync();
return expect(bytes32).to.be.equal(testBytes32);
});
it('should successfully read bytes32 when it is offset in the array', async () => {
const bytes32ByteArrayBuffer = ethUtil.toBuffer(testBytes32);
const prefixByteArrayBuffer = ethUtil.toBuffer('0xabcdef');
const combinedByteArrayBuffer = Buffer.concat([prefixByteArrayBuffer, bytes32ByteArrayBuffer]);
const combinedByteArray = ethUtil.bufferToHex(combinedByteArrayBuffer);
const testBytes32Offset = new BigNumber(prefixByteArrayBuffer.byteLength);
const bytes32 = await libBytes.publicReadBytes32(combinedByteArray, testBytes32Offset).callAsync();
return expect(bytes32).to.be.equal(testBytes32);
});
it('should fail if the byte array is too short to hold a bytes32', async () => {
const offset = new BigNumber(0);
const byteLen = new BigNumber(fromHex(byteArrayShorterThan32Bytes).length);
const expectedError = new LibBytesRevertErrors.InvalidByteOperationError(
LibBytesRevertErrors.InvalidByteOperationErrorCodes.LengthGreaterThanOrEqualsThirtyTwoRequired,
byteLen,
new BigNumber(32),
);
return expect(libBytes.publicReadBytes32(byteArrayShorterThan32Bytes, offset).callAsync()).to.revertWith(
expectedError,
);
});
it('should fail if the length between the offset and end of the byte array is too short to hold a bytes32', async () => {
const badOffset = new BigNumber(ethUtil.toBuffer(testBytes32).byteLength);
const expectedError = new LibBytesRevertErrors.InvalidByteOperationError(
LibBytesRevertErrors.InvalidByteOperationErrorCodes.LengthGreaterThanOrEqualsThirtyTwoRequired,
badOffset,
badOffset.plus(new BigNumber(32)),
);
return expect(libBytes.publicReadBytes32(testBytes32, badOffset).callAsync()).to.revertWith(expectedError);
});
});
describe('writeBytes32', () => {
it('should successfully write bytes32 when the address takes up the whole array', async () => {
const byteArray = testBytes32;
const testBytes32Offset = new BigNumber(0);
const newByteArray = await libBytes
.publicWriteBytes32(byteArray, testBytes32Offset, testBytes32B)
.callAsync();
return expect(newByteArray).to.be.equal(testBytes32B);
});
it('should successfully write bytes32 when it is offset in the array', async () => {
const bytes32ByteArrayBuffer = ethUtil.toBuffer(testBytes32);
const prefixByteArrayBuffer = ethUtil.toBuffer('0xabcdef');
const combinedByteArrayBuffer = Buffer.concat([prefixByteArrayBuffer, bytes32ByteArrayBuffer]);
const combinedByteArray = ethUtil.bufferToHex(combinedByteArrayBuffer);
const testBytes32Offset = new BigNumber(prefixByteArrayBuffer.byteLength);
const newByteArray = await libBytes
.publicWriteBytes32(combinedByteArray, testBytes32Offset, testBytes32B)
.callAsync();
const newByteArrayBuffer = ethUtil.toBuffer(newByteArray);
const bytes32FromOffsetBuffer = newByteArrayBuffer.slice(prefixByteArrayBuffer.byteLength);
const bytes32FromOffset = ethUtil.addHexPrefix(ethUtil.bufferToHex(bytes32FromOffsetBuffer));
return expect(bytes32FromOffset).to.be.equal(testBytes32B);
});
it('should fail if the byte array is too short to hold a bytes32', async () => {
const offset = new BigNumber(0);
const byteLen = new BigNumber(fromHex(byteArrayShorterThan32Bytes).length);
const expectedError = new LibBytesRevertErrors.InvalidByteOperationError(
LibBytesRevertErrors.InvalidByteOperationErrorCodes.LengthGreaterThanOrEqualsThirtyTwoRequired,
byteLen,
new BigNumber(32),
);
return expect(
libBytes.publicWriteBytes32(byteArrayShorterThan32Bytes, offset, testBytes32).callAsync(),
).to.revertWith(expectedError);
});
it('should fail if the length between the offset and end of the byte array is too short to hold a bytes32', async () => {
const byteArray = byteArrayLongerThan32Bytes;
const badOffset = new BigNumber(ethUtil.toBuffer(byteArray).byteLength);
const expectedError = new LibBytesRevertErrors.InvalidByteOperationError(
LibBytesRevertErrors.InvalidByteOperationErrorCodes.LengthGreaterThanOrEqualsThirtyTwoRequired,
badOffset,
badOffset.plus(new BigNumber(32)),
);
return expect(libBytes.publicWriteBytes32(byteArray, badOffset, testBytes32).callAsync()).to.revertWith(
expectedError,
);
});
});
describe('readUint256', () => {
it('should successfully read uint256 when the uint256 takes up the whole array', async () => {
const formattedTestUint256 = new BN(testUint256.toString(10));
const testUint256AsBuffer = ethUtil.toBuffer(formattedTestUint256);
const byteArray = ethUtil.bufferToHex(testUint256AsBuffer);
const testUint256Offset = new BigNumber(0);
const uint256 = await libBytes.publicReadUint256(byteArray, testUint256Offset).callAsync();
return expect(uint256).to.bignumber.equal(testUint256);
});
it('should successfully read uint256 when it is offset in the array', async () => {
const prefixByteArrayBuffer = ethUtil.toBuffer('0xabcdef');
const formattedTestUint256 = new BN(testUint256.toString(10));
const testUint256AsBuffer = ethUtil.toBuffer(formattedTestUint256);
const combinedByteArrayBuffer = Buffer.concat([prefixByteArrayBuffer, testUint256AsBuffer]);
const combinedByteArray = ethUtil.bufferToHex(combinedByteArrayBuffer);
const testUint256Offset = new BigNumber(prefixByteArrayBuffer.byteLength);
const uint256 = await libBytes.publicReadUint256(combinedByteArray, testUint256Offset).callAsync();
return expect(uint256).to.bignumber.equal(testUint256);
});
it('should fail if the byte array is too short to hold a uint256', async () => {
const offset = new BigNumber(0);
const byteLen = new BigNumber(fromHex(byteArrayShorterThan32Bytes).length);
const expectedError = new LibBytesRevertErrors.InvalidByteOperationError(
LibBytesRevertErrors.InvalidByteOperationErrorCodes.LengthGreaterThanOrEqualsThirtyTwoRequired,
byteLen,
new BigNumber(32),
);
return expect(libBytes.publicReadUint256(byteArrayShorterThan32Bytes, offset).callAsync()).to.revertWith(
expectedError,
);
});
it('should fail if the length between the offset and end of the byte array is too short to hold a uint256', async () => {
const formattedTestUint256 = new BN(testUint256.toString(10));
const testUint256AsBuffer = ethUtil.toBuffer(formattedTestUint256);
const byteArray = ethUtil.bufferToHex(testUint256AsBuffer);
const badOffset = new BigNumber(testUint256AsBuffer.byteLength);
const expectedError = new LibBytesRevertErrors.InvalidByteOperationError(
LibBytesRevertErrors.InvalidByteOperationErrorCodes.LengthGreaterThanOrEqualsThirtyTwoRequired,
badOffset,
badOffset.plus(new BigNumber(32)),
);
return expect(libBytes.publicReadUint256(byteArray, badOffset).callAsync()).to.revertWith(expectedError);
});
});
describe('writeUint256', () => {
it('should successfully write uint256 when the address takes up the whole array', async () => {
const byteArray = testBytes32;
const testUint256Offset = new BigNumber(0);
const newByteArray = await libBytes
.publicWriteUint256(byteArray, testUint256Offset, testUint256B)
.callAsync();
const newByteArrayAsUint256 = new BigNumber(newByteArray, 16);
return expect(newByteArrayAsUint256).to.be.bignumber.equal(testUint256B);
});
it('should successfully write uint256 when it is offset in the array', async () => {
const bytes32ByteArrayBuffer = ethUtil.toBuffer(testBytes32);
const prefixByteArrayBuffer = ethUtil.toBuffer('0xabcdef');
const combinedByteArrayBuffer = Buffer.concat([prefixByteArrayBuffer, bytes32ByteArrayBuffer]);
const combinedByteArray = ethUtil.bufferToHex(combinedByteArrayBuffer);
const testUint256Offset = new BigNumber(prefixByteArrayBuffer.byteLength);
const newByteArray = await libBytes
.publicWriteUint256(combinedByteArray, testUint256Offset, testUint256B)
.callAsync();
const newByteArrayBuffer = ethUtil.toBuffer(newByteArray);
const uint256FromOffsetBuffer = newByteArrayBuffer.slice(prefixByteArrayBuffer.byteLength);
const uint256FromOffset = new BigNumber(
ethUtil.addHexPrefix(ethUtil.bufferToHex(uint256FromOffsetBuffer)),
16,
);
return expect(uint256FromOffset).to.be.bignumber.equal(testUint256B);
});
it('should fail if the byte array is too short to hold a uint256', async () => {
const offset = new BigNumber(0);
const byteLen = new BigNumber(fromHex(byteArrayShorterThan32Bytes).length);
const expectedError = new LibBytesRevertErrors.InvalidByteOperationError(
LibBytesRevertErrors.InvalidByteOperationErrorCodes.LengthGreaterThanOrEqualsThirtyTwoRequired,
byteLen,
new BigNumber(32),
);
return expect(
libBytes.publicWriteUint256(byteArrayShorterThan32Bytes, offset, testUint256).callAsync(),
).to.revertWith(expectedError);
});
it('should fail if the length between the offset and end of the byte array is too short to hold a uint256', async () => {
const byteArray = byteArrayLongerThan32Bytes;
const badOffset = new BigNumber(ethUtil.toBuffer(byteArray).byteLength);
const expectedError = new LibBytesRevertErrors.InvalidByteOperationError(
LibBytesRevertErrors.InvalidByteOperationErrorCodes.LengthGreaterThanOrEqualsThirtyTwoRequired,
badOffset,
badOffset.plus(new BigNumber(32)),
);
return expect(libBytes.publicWriteUint256(byteArray, badOffset, testUint256).callAsync()).to.revertWith(
expectedError,
);
});
});
describe('readBytes4', () => {
// AssertionError: expected promise to be rejected with an error including 'revert' but it was fulfilled with '0x08c379a0'
it('should revert if byte array has a length < 4', async () => {
const byteArrayLessThan4Bytes = '0x010101';
const byteLen = fromHex(byteArrayLessThan4Bytes).length;
const offset = new BigNumber(0);
const expectedError = new LibBytesRevertErrors.InvalidByteOperationError(
LibBytesRevertErrors.InvalidByteOperationErrorCodes.LengthGreaterThanOrEqualsFourRequired,
new BigNumber(byteLen), // length of byteArrayLessThan4Bytes
new BigNumber(4),
);
return expect(libBytes.publicReadBytes4(byteArrayLessThan4Bytes, offset).callAsync()).to.revertWith(
expectedError,
);
});
it('should return the first 4 bytes of a byte array of arbitrary length', async () => {
const first4Bytes = await libBytes
.publicReadBytes4(byteArrayLongerThan32Bytes, new BigNumber(0))
.callAsync();
const expectedFirst4Bytes = byteArrayLongerThan32Bytes.slice(0, 10);
expect(first4Bytes).to.equal(expectedFirst4Bytes);
});
it('should successfully read bytes4 when the bytes4 takes up the whole array', async () => {
const testBytes4Offset = new BigNumber(0);
const bytes4 = await libBytes.publicReadBytes4(testBytes4, testBytes4Offset).callAsync();
return expect(bytes4).to.be.equal(testBytes4);
});
it('should successfully read bytes4 when it is offset in the array', async () => {
const bytes4ByteArrayBuffer = ethUtil.toBuffer(testBytes4);
const prefixByteArrayBuffer = ethUtil.toBuffer('0xabcdef');
const combinedByteArrayBuffer = Buffer.concat([prefixByteArrayBuffer, bytes4ByteArrayBuffer]);
const combinedByteArray = ethUtil.bufferToHex(combinedByteArrayBuffer);
const testBytes4Offset = new BigNumber(prefixByteArrayBuffer.byteLength);
const bytes4 = await libBytes.publicReadBytes4(combinedByteArray, testBytes4Offset).callAsync();
return expect(bytes4).to.be.equal(testBytes4);
});
it('should fail if the length between the offset and end of the byte array is too short to hold a bytes4', async () => {
const badOffset = new BigNumber(ethUtil.toBuffer(testBytes4).byteLength);
const byteLen = new BigNumber(fromHex(testBytes4).length);
const expectedError = new LibBytesRevertErrors.InvalidByteOperationError(
LibBytesRevertErrors.InvalidByteOperationErrorCodes.LengthGreaterThanOrEqualsFourRequired,
byteLen,
badOffset.plus(new BigNumber(4)),
);
return expect(libBytes.publicReadBytes4(testBytes4, badOffset).callAsync()).to.revertWith(expectedError);
});
});
describe('memCopy', () => {
// Create memory 0x000102...FF
const memSize = 256;
// tslint:disable:no-shadowed-variable
const memory = new Uint8Array(memSize).map((_, i) => i);
const memHex = toHex(memory);
// Reference implementation to test against
const refMemcpy = (mem: Uint8Array, dest: number, source: number, length: number): Uint8Array =>
Uint8Array.from(mem).copyWithin(dest, source, source + length);
// Test vectors: destination, source, length, job description
type Tests = Array<[number, number, number, string]>;
const test = (tests: Tests) =>
tests.forEach(([dest, source, length, job]) =>
it(job, async () => {
const expected = refMemcpy(memory, dest, source, length);
const resultStr = await libBytes
.testMemcpy(memHex, new BigNumber(dest), new BigNumber(source), new BigNumber(length))
.callAsync();
const result = fromHex(resultStr);
expect(result).to.deep.equal(expected);
}),
);
test([[0, 0, 0, 'copies zero bytes with overlap']]);
describe('copies forward', () =>
test([
[128, 0, 0, 'zero bytes'],
[128, 0, 1, 'one byte'],
[128, 0, 11, 'eleven bytes'],
[128, 0, 31, 'thirty-one bytes'],
[128, 0, 32, 'one word'],
[128, 0, 64, 'two words'],
[128, 0, 96, 'three words'],
[128, 0, 33, 'one word and one byte'],
[128, 0, 72, 'two words and eight bytes'],
[128, 0, 100, 'three words and four bytes'],
]));
describe('copies forward within one word', () =>
test([
[16, 0, 0, 'zero bytes'],
[16, 0, 1, 'one byte'],
[16, 0, 11, 'eleven bytes'],
[16, 0, 16, 'sixteen bytes'],
]));
describe('copies forward with one byte overlap', () =>
test([
[0, 0, 1, 'one byte'],
[10, 0, 11, 'eleven bytes'],
[30, 0, 31, 'thirty-one bytes'],
[31, 0, 32, 'one word'],
[32, 0, 33, 'one word and one byte'],
[71, 0, 72, 'two words and eight bytes'],
[99, 0, 100, 'three words and four bytes'],
]));
describe('copies forward with thirty-one bytes overlap', () =>
test([
[0, 0, 31, 'thirty-one bytes'],
[1, 0, 32, 'one word'],
[2, 0, 33, 'one word and one byte'],
[41, 0, 72, 'two words and eight bytes'],
[69, 0, 100, 'three words and four bytes'],
]));
describe('copies forward with one word overlap', () =>
test([
[0, 0, 32, 'one word'],
[1, 0, 33, 'one word and one byte'],
[41, 0, 72, 'two words and eight bytes'],
[69, 0, 100, 'three words and four bytes'],
]));
describe('copies forward with one word and one byte overlap', () =>
test([
[0, 0, 33, 'one word and one byte'],
[40, 0, 72, 'two words and eight bytes'],
[68, 0, 100, 'three words and four bytes'],
]));
describe('copies forward with two words overlap', () =>
test([
[0, 0, 64, 'two words'],
[8, 0, 72, 'two words and eight bytes'],
[36, 0, 100, 'three words and four bytes'],
]));
describe('copies forward within one word and one byte overlap', () =>
test([[0, 0, 1, 'one byte'], [10, 0, 11, 'eleven bytes'], [15, 0, 16, 'sixteen bytes']]));
describe('copies backward', () =>
test([
[0, 128, 0, 'zero bytes'],
[0, 128, 1, 'one byte'],
[0, 128, 11, 'eleven bytes'],
[0, 128, 31, 'thirty-one bytes'],
[0, 128, 32, 'one word'],
[0, 128, 64, 'two words'],
[0, 128, 96, 'three words'],
[0, 128, 33, 'one word and one byte'],
[0, 128, 72, 'two words and eight bytes'],
[0, 128, 100, 'three words and four bytes'],
]));
describe('copies backward within one word', () =>
test([
[0, 16, 0, 'zero bytes'],
[0, 16, 1, 'one byte'],
[0, 16, 11, 'eleven bytes'],
[0, 16, 16, 'sixteen bytes'],
]));
describe('copies backward with one byte overlap', () =>
test([
[0, 0, 1, 'one byte'],
[0, 10, 11, 'eleven bytes'],
[0, 30, 31, 'thirty-one bytes'],
[0, 31, 32, 'one word'],
[0, 32, 33, 'one word and one byte'],
[0, 71, 72, 'two words and eight bytes'],
[0, 99, 100, 'three words and four bytes'],
]));
describe('copies backward with thirty-one bytes overlap', () =>
test([
[0, 0, 31, 'thirty-one bytes'],
[0, 1, 32, 'one word'],
[0, 2, 33, 'one word and one byte'],
[0, 41, 72, 'two words and eight bytes'],
[0, 69, 100, 'three words and four bytes'],
]));
describe('copies backward with one word overlap', () =>
test([
[0, 0, 32, 'one word'],
[0, 1, 33, 'one word and one byte'],
[0, 41, 72, 'two words and eight bytes'],
[0, 69, 100, 'three words and four bytes'],
]));
describe('copies backward with one word and one byte overlap', () =>
test([
[0, 0, 33, 'one word and one byte'],
[0, 40, 72, 'two words and eight bytes'],
[0, 68, 100, 'three words and four bytes'],
]));
describe('copies backward with two words overlap', () =>
test([
[0, 0, 64, 'two words'],
[0, 8, 72, 'two words and eight bytes'],
[0, 36, 100, 'three words and four bytes'],
]));
describe('copies forward within one word and one byte overlap', () =>
test([[0, 0, 1, 'one byte'], [0, 10, 11, 'eleven bytes'], [0, 15, 16, 'sixteen bytes']]));
});
describe('slice', () => {
it('should revert if from > to', async () => {
const from = new BigNumber(1);
const to = new BigNumber(0);
const expectedError = new LibBytesRevertErrors.InvalidByteOperationError(
LibBytesRevertErrors.InvalidByteOperationErrorCodes.FromLessThanOrEqualsToRequired,
from,
to,
);
return expect(libBytes.publicSlice(byteArrayLongerThan32Bytes, from, to).callAsync()).to.revertWith(
expectedError,
);
});
it('should return a byte array of length 0 if from == to', async () => {
const from = new BigNumber(0);
const to = from;
const [result, original] = await libBytes.publicSlice(byteArrayLongerThan32Bytes, from, to).callAsync();
expect(original).to.eq(byteArrayLongerThan32Bytes);
expect(result).to.eq(constants.NULL_BYTES);
});
it('should return a byte array of length 0 if from == to == b.length', async () => {
const byteLen = fromHex(byteArrayLongerThan32Bytes).length;
const from = new BigNumber(byteLen);
const to = from;
const [result, original] = await libBytes.publicSlice(byteArrayLongerThan32Bytes, from, to).callAsync();
expect(original).to.eq(byteArrayLongerThan32Bytes);
expect(result).to.eq(constants.NULL_BYTES);
});
it('should revert if to > input.length', async () => {
const byteLen: number = (byteArrayLongerThan32Bytes.length - 2) / 2;
const from = new BigNumber(0);
const to = new BigNumber(byteLen).plus(1);
const expectedError = new LibBytesRevertErrors.InvalidByteOperationError(
LibBytesRevertErrors.InvalidByteOperationErrorCodes.ToLessThanOrEqualsLengthRequired,
to,
new BigNumber(byteLen),
);
return expect(libBytes.publicSlice(byteArrayLongerThan32Bytes, from, to).callAsync()).to.revertWith(
expectedError,
);
});
it('should slice a section of the input', async () => {
const from = new BigNumber(1);
const to = new BigNumber(2);
const [result, original] = await libBytes.publicSlice(byteArrayLongerThan32Bytes, from, to).callAsync();
const expectedResult = `0x${byteArrayLongerThan32Bytes.slice(4, 6)}`;
expect(original).to.eq(byteArrayLongerThan32Bytes);
expect(result).to.eq(expectedResult);
});
it('should copy the entire input if from = 0 and to = input.length', async () => {
const byteLen = fromHex(byteArrayLongerThan32Bytes).length;
const from = new BigNumber(0);
const to = new BigNumber(byteLen);
const [result, original] = await libBytes.publicSlice(byteArrayLongerThan32Bytes, from, to).callAsync();
expect(original).to.eq(byteArrayLongerThan32Bytes);
expect(result).to.eq(byteArrayLongerThan32Bytes);
});
});
describe('sliceDestructive', () => {
it('should revert if from > to', async () => {
const from = new BigNumber(1);
const to = new BigNumber(0);
const expectedError = new LibBytesRevertErrors.InvalidByteOperationError(
LibBytesRevertErrors.InvalidByteOperationErrorCodes.FromLessThanOrEqualsToRequired,
from,
to,
);
return expect(libBytes.publicSlice(byteArrayLongerThan32Bytes, from, to).callAsync()).to.revertWith(
expectedError,
);
});
it('should return a byte array of length 0 if from == to', async () => {
const from = new BigNumber(0);
const to = from;
const [result] = await libBytes.publicSliceDestructive(byteArrayLongerThan32Bytes, from, to).callAsync();
expect(result).to.eq(constants.NULL_BYTES);
});
it('should return a byte array of length 0 if from == to == b.length', async () => {
const byteLen = fromHex(byteArrayLongerThan32Bytes).length;
const from = new BigNumber(byteLen);
const to = from;
const [result] = await libBytes.publicSliceDestructive(byteArrayLongerThan32Bytes, from, to).callAsync();
expect(result).to.eq(constants.NULL_BYTES);
});
it('should revert if to > input.length', async () => {
const byteLen = fromHex(byteArrayLongerThan32Bytes).length;
const from = new BigNumber(0);
const to = new BigNumber(byteLen).plus(1);
const expectedError = new LibBytesRevertErrors.InvalidByteOperationError(
LibBytesRevertErrors.InvalidByteOperationErrorCodes.ToLessThanOrEqualsLengthRequired,
to,
new BigNumber(byteLen),
);
return expect(
libBytes.publicSliceDestructive(byteArrayLongerThan32Bytes, from, to).callAsync(),
).to.revertWith(expectedError);
});
it('should slice a section of the input', async () => {
const from = new BigNumber(1);
const to = new BigNumber(2);
const [result] = await libBytes.publicSliceDestructive(byteArrayLongerThan32Bytes, from, to).callAsync();
const expectedResult = `0x${byteArrayLongerThan32Bytes.slice(4, 6)}`;
expect(result).to.eq(expectedResult);
});
it('should copy the entire input if from = 0 and to = input.length', async () => {
const byteLen = fromHex(byteArrayLongerThan32Bytes).length;
const from = new BigNumber(0);
const to = new BigNumber(byteLen);
const [result] = await libBytes.publicSliceDestructive(byteArrayLongerThan32Bytes, from, to).callAsync();
expect(result).to.eq(byteArrayLongerThan32Bytes);
});
});
describe('writeLength', () => {
it('should return a null byte array if length is set to 0', async () => {
const result = await libBytes
.publicWriteLength(byteArrayLongerThan32Bytes, constants.ZERO_AMOUNT, constants.NULL_BYTES)
.callAsync();
expect(result).to.eq(constants.NULL_BYTES);
});
it('should return the same byte array if length is unchanged', async () => {
const byteLen = fromHex(byteArrayLongerThan32Bytes).length;
const result = await libBytes
.publicWriteLength(byteArrayLongerThan32Bytes, new BigNumber(byteLen), constants.NULL_BYTES)
.callAsync();
expect(result).to.eq(byteArrayLongerThan32Bytes);
});
it('should shave off lower order bytes if new length is less than original', async () => {
const byteLen = fromHex(byteArrayLongerThan32Bytes).length;
const newLen = new BigNumber(byteLen).dividedToIntegerBy(2);
const result = await libBytes
.publicWriteLength(byteArrayLongerThan32Bytes, newLen, constants.NULL_BYTES)
.callAsync();
expect(result).to.eq(
byteArrayLongerThan32Bytes.slice(
0,
newLen
.multipliedBy(2)
.plus(2)
.toNumber(),
),
);
});
it("should right pad with 0's if new length is greater than original and no extra bytes are appended", async () => {
const byteLen = fromHex(byteArrayLongerThan32Bytes).length;
const newLen = new BigNumber(byteLen).multipliedBy(2);
const result = await libBytes
.publicWriteLength(byteArrayLongerThan32Bytes, newLen, constants.NULL_BYTES)
.callAsync();
expect(result).to.eq(`${byteArrayLongerThan32Bytes}${'0'.repeat(byteArrayLongerThan32Bytes.length - 2)}`);
});
it('should right pad with extra bytes if specified', async () => {
const byteLen = fromHex(byteArrayLongerThan32Bytes).length;
const newLen = new BigNumber(byteLen).multipliedBy(2);
const result = await libBytes
.publicWriteLength(byteArrayLongerThan32Bytes, newLen, byteArrayLongerThan32Bytes)
.callAsync();
expect(result).to.eq(`${byteArrayLongerThan32Bytes}${byteArrayLongerThan32Bytes.slice(2)}`);
});
it('should result in the same byte array if length is reduced and reset', async () => {
const byteLen = fromHex(byteArrayLongerThan32Bytes).length;
const tempByteLen = new BigNumber(byteLen).dividedToIntegerBy(2);
return expect(
libBytes.assertBytesUnchangedAfterLengthReset(byteArrayLongerThan32Bytes, tempByteLen).callAsync(),
).to.be.fulfilled('');
});
it('should result in the same byte array if length is increased and reset', async () => {
const byteLen = fromHex(byteArrayLongerThan32Bytes).length;
const tempByteLen = new BigNumber(byteLen).multipliedBy(2);
return expect(
libBytes.assertBytesUnchangedAfterLengthReset(byteArrayLongerThan32Bytes, tempByteLen).callAsync(),
).to.be.fulfilled('');
});
});
});
// tslint:disable:max-file-line-count