import { blockchainTests, constants, expect } from '@0x/contracts-test-utils'; import { BigNumber, LibBytesRevertErrors } from '@0x/utils'; import BN = require('bn.js'); import * as ethUtil from 'ethereumjs-util'; import * as _ from 'lodash'; import { artifacts } from './artifacts'; import { TestLibBytesContract } from './wrappers'; // BUG: Ideally we would use fromHex(memory).toString('hex') // https://github.com/Microsoft/TypeScript/issues/23155 const toHex = (buf: Uint8Array): string => buf.reduce((a, v) => a + `00${v.toString(16)}`.slice(-2), '0x'); const fromHex = (str: string): Uint8Array => Uint8Array.from(Buffer.from(str.slice(2), 'hex')); blockchainTests('LibBytes', env => { let libBytes: TestLibBytesContract; const byteArrayShorterThan32Bytes = '0x012345'; const byteArrayShorterThan20Bytes = byteArrayShorterThan32Bytes; const byteArrayLongerThan32Bytes = '0x0123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef'; const byteArrayLongerThan32BytesFirstBytesSwapped = '0x2301456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef'; const byteArrayLongerThan32BytesLastBytesSwapped = '0x0123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef0123456789abefcd'; let testAddress: string; let testAddressB: string; const testBytes32 = '0x102030405060708090a0b0c0d0e0f0102030405060708090a0b0c0d0e0f01020'; const testBytes32B = '0x534877abd8443578526845cdfef020047528759477fedef87346527659aced32'; const testUint256 = new BigNumber(testBytes32, 16); const testUint256B = new BigNumber(testBytes32B, 16); const testBytes4 = '0xabcdef12'; const testByte = '0xab'; before(async () => { // Setup accounts & addresses const accounts = await env.getAccountAddressesAsync(); testAddress = accounts[1]; testAddressB = accounts[2]; // Deploy LibBytes libBytes = await TestLibBytesContract.deployFrom0xArtifactAsync( artifacts.TestLibBytes, env.provider, env.txDefaults, artifacts, ); // Verify lengths of test data const byteArrayShorterThan32BytesLength = ethUtil.toBuffer(byteArrayShorterThan32Bytes).byteLength; expect(byteArrayShorterThan32BytesLength).to.be.lessThan(32); const byteArrayLongerThan32BytesLength = ethUtil.toBuffer(byteArrayLongerThan32Bytes).byteLength; expect(byteArrayLongerThan32BytesLength).to.be.greaterThan(32); const testBytes32Length = ethUtil.toBuffer(testBytes32).byteLength; expect(testBytes32Length).to.be.equal(32); }); describe('popLastByte', () => { it('should revert if length is 0', async () => { const expectedError = new LibBytesRevertErrors.InvalidByteOperationError( LibBytesRevertErrors.InvalidByteOperationErrorCodes.LengthGreaterThanZeroRequired, constants.ZERO_AMOUNT, constants.ZERO_AMOUNT, ); return expect(libBytes.publicPopLastByte(constants.NULL_BYTES).callAsync()).to.revertWith(expectedError); }); it('should pop the last byte from the input and return it when array holds more than 1 byte', async () => { const [newBytes, poppedByte] = await libBytes.publicPopLastByte(byteArrayLongerThan32Bytes).callAsync(); const expectedNewBytes = byteArrayLongerThan32Bytes.slice(0, -2); const expectedPoppedByte = `0x${byteArrayLongerThan32Bytes.slice(-2)}`; expect(newBytes).to.equal(expectedNewBytes); expect(poppedByte).to.equal(expectedPoppedByte); }); it('should pop the last byte from the input and return it when array is exactly 1 byte', async () => { const [newBytes, poppedByte] = await libBytes.publicPopLastByte(testByte).callAsync(); const expectedNewBytes = '0x'; expect(newBytes).to.equal(expectedNewBytes); return expect(poppedByte).to.be.equal(testByte); }); }); describe('equals', () => { it('should return true if byte arrays are equal (both arrays < 32 bytes)', async () => { const isEqual = await libBytes .publicEquals(byteArrayShorterThan32Bytes, byteArrayShorterThan32Bytes) .callAsync(); return expect(isEqual).to.be.true(); }); it('should return true if byte arrays are equal (both arrays > 32 bytes)', async () => { const isEqual = await libBytes .publicEquals(byteArrayLongerThan32Bytes, byteArrayLongerThan32Bytes) .callAsync(); return expect(isEqual).to.be.true(); }); it('should return false if byte arrays are not equal (first array < 32 bytes, second array > 32 bytes)', async () => { const isEqual = await libBytes .publicEquals(byteArrayShorterThan32Bytes, byteArrayLongerThan32Bytes) .callAsync(); return expect(isEqual).to.be.false(); }); it('should return false if byte arrays are not equal (first array > 32 bytes, second array < 32 bytes)', async () => { const isEqual = await libBytes .publicEquals(byteArrayLongerThan32Bytes, byteArrayShorterThan32Bytes) .callAsync(); return expect(isEqual).to.be.false(); }); it('should return false if byte arrays are not equal (same length, but a byte in first word differs)', async () => { const isEqual = await libBytes .publicEquals(byteArrayLongerThan32BytesFirstBytesSwapped, byteArrayLongerThan32Bytes) .callAsync(); return expect(isEqual).to.be.false(); }); it('should return false if byte arrays are not equal (same length, but a byte in last word differs)', async () => { const isEqual = await libBytes .publicEquals(byteArrayLongerThan32BytesLastBytesSwapped, byteArrayLongerThan32Bytes) .callAsync(); return expect(isEqual).to.be.false(); }); describe('should ignore trailing data', () => { it('should return true when both < 32 bytes', async () => { const isEqual = await libBytes.publicEqualsPop1('0x0102', '0x0103').callAsync(); return expect(isEqual).to.be.true(); }); }); }); describe('readAddress', () => { it('should successfully read address when the address takes up the whole array', async () => { const byteArray = ethUtil.addHexPrefix(testAddress); const testAddressOffset = new BigNumber(0); const address = await libBytes.publicReadAddress(byteArray, testAddressOffset).callAsync(); return expect(address).to.be.equal(testAddress); }); it('should successfully read address when it is offset in the array', async () => { const addressByteArrayBuffer = ethUtil.toBuffer(testAddress); const prefixByteArrayBuffer = ethUtil.toBuffer('0xabcdef'); const combinedByteArrayBuffer = Buffer.concat([prefixByteArrayBuffer, addressByteArrayBuffer]); const combinedByteArray = ethUtil.bufferToHex(combinedByteArrayBuffer); const testAddressOffset = new BigNumber(prefixByteArrayBuffer.byteLength); const address = await libBytes.publicReadAddress(combinedByteArray, testAddressOffset).callAsync(); return expect(address).to.be.equal(testAddress); }); it('should fail if the byte array is too short to hold an address', async () => { const shortByteArray = '0xabcdef'; const offset = new BigNumber(0); const expectedError = new LibBytesRevertErrors.InvalidByteOperationError( LibBytesRevertErrors.InvalidByteOperationErrorCodes.LengthGreaterThanOrEqualsTwentyRequired, new BigNumber(3), new BigNumber(20), ); return expect(libBytes.publicReadAddress(shortByteArray, offset).callAsync()).to.revertWith(expectedError); }); it('should fail if the length between the offset and end of the byte array is too short to hold an address', async () => { const byteArray = testAddress; const badOffset = new BigNumber(ethUtil.toBuffer(byteArray).byteLength); const expectedError = new LibBytesRevertErrors.InvalidByteOperationError( LibBytesRevertErrors.InvalidByteOperationErrorCodes.LengthGreaterThanOrEqualsTwentyRequired, new BigNumber(20), new BigNumber(40), ); return expect(libBytes.publicReadAddress(byteArray, badOffset).callAsync()).to.revertWith(expectedError); }); }); describe('writeAddress', () => { it('should successfully write address when the address takes up the whole array', async () => { const byteArray = testAddress; const testAddressOffset = new BigNumber(0); const newByteArray = await libBytes .publicWriteAddress(byteArray, testAddressOffset, testAddressB) .callAsync(); return expect(newByteArray).to.be.equal(testAddressB); }); it('should successfully write address when it is offset in the array', async () => { const addressByteArrayBuffer = ethUtil.toBuffer(testAddress); const prefixByteArrayBuffer = ethUtil.toBuffer('0xabcdef'); const combinedByteArrayBuffer = Buffer.concat([prefixByteArrayBuffer, addressByteArrayBuffer]); const combinedByteArray = ethUtil.bufferToHex(combinedByteArrayBuffer); const testAddressOffset = new BigNumber(prefixByteArrayBuffer.byteLength); const newByteArray = await libBytes .publicWriteAddress(combinedByteArray, testAddressOffset, testAddressB) .callAsync(); const newByteArrayBuffer = ethUtil.toBuffer(newByteArray); const addressFromOffsetBuffer = newByteArrayBuffer.slice(prefixByteArrayBuffer.byteLength); const addressFromOffset = ethUtil.addHexPrefix(ethUtil.bufferToHex(addressFromOffsetBuffer)); return expect(addressFromOffset).to.be.equal(testAddressB); }); it('should fail if the byte array is too short to hold an address', async () => { const offset = new BigNumber(0); const byteLen = ethUtil.toBuffer(byteArrayShorterThan20Bytes).byteLength; const expectedError = new LibBytesRevertErrors.InvalidByteOperationError( LibBytesRevertErrors.InvalidByteOperationErrorCodes.LengthGreaterThanOrEqualsTwentyRequired, new BigNumber(byteLen), new BigNumber(20), ); return expect( libBytes.publicWriteAddress(byteArrayShorterThan20Bytes, offset, testAddress).callAsync(), ).to.revertWith(expectedError); }); it('should fail if the length between the offset and end of the byte array is too short to hold an address', async () => { const byteArray = byteArrayLongerThan32Bytes; const badOffset = new BigNumber(ethUtil.toBuffer(byteArray).byteLength); const expectedError = new LibBytesRevertErrors.InvalidByteOperationError( LibBytesRevertErrors.InvalidByteOperationErrorCodes.LengthGreaterThanOrEqualsTwentyRequired, badOffset, badOffset.plus(new BigNumber(20)), ); return expect(libBytes.publicWriteAddress(byteArray, badOffset, testAddress).callAsync()).to.revertWith( expectedError, ); }); }); describe('readBytes32', () => { it('should successfully read bytes32 when the bytes32 takes up the whole array', async () => { const testBytes32Offset = new BigNumber(0); const bytes32 = await libBytes.publicReadBytes32(testBytes32, testBytes32Offset).callAsync(); return expect(bytes32).to.be.equal(testBytes32); }); it('should successfully read bytes32 when it is offset in the array', async () => { const bytes32ByteArrayBuffer = ethUtil.toBuffer(testBytes32); const prefixByteArrayBuffer = ethUtil.toBuffer('0xabcdef'); const combinedByteArrayBuffer = Buffer.concat([prefixByteArrayBuffer, bytes32ByteArrayBuffer]); const combinedByteArray = ethUtil.bufferToHex(combinedByteArrayBuffer); const testBytes32Offset = new BigNumber(prefixByteArrayBuffer.byteLength); const bytes32 = await libBytes.publicReadBytes32(combinedByteArray, testBytes32Offset).callAsync(); return expect(bytes32).to.be.equal(testBytes32); }); it('should fail if the byte array is too short to hold a bytes32', async () => { const offset = new BigNumber(0); const byteLen = new BigNumber(fromHex(byteArrayShorterThan32Bytes).length); const expectedError = new LibBytesRevertErrors.InvalidByteOperationError( LibBytesRevertErrors.InvalidByteOperationErrorCodes.LengthGreaterThanOrEqualsThirtyTwoRequired, byteLen, new BigNumber(32), ); return expect(libBytes.publicReadBytes32(byteArrayShorterThan32Bytes, offset).callAsync()).to.revertWith( expectedError, ); }); it('should fail if the length between the offset and end of the byte array is too short to hold a bytes32', async () => { const badOffset = new BigNumber(ethUtil.toBuffer(testBytes32).byteLength); const expectedError = new LibBytesRevertErrors.InvalidByteOperationError( LibBytesRevertErrors.InvalidByteOperationErrorCodes.LengthGreaterThanOrEqualsThirtyTwoRequired, badOffset, badOffset.plus(new BigNumber(32)), ); return expect(libBytes.publicReadBytes32(testBytes32, badOffset).callAsync()).to.revertWith(expectedError); }); }); describe('writeBytes32', () => { it('should successfully write bytes32 when the address takes up the whole array', async () => { const byteArray = testBytes32; const testBytes32Offset = new BigNumber(0); const newByteArray = await libBytes .publicWriteBytes32(byteArray, testBytes32Offset, testBytes32B) .callAsync(); return expect(newByteArray).to.be.equal(testBytes32B); }); it('should successfully write bytes32 when it is offset in the array', async () => { const bytes32ByteArrayBuffer = ethUtil.toBuffer(testBytes32); const prefixByteArrayBuffer = ethUtil.toBuffer('0xabcdef'); const combinedByteArrayBuffer = Buffer.concat([prefixByteArrayBuffer, bytes32ByteArrayBuffer]); const combinedByteArray = ethUtil.bufferToHex(combinedByteArrayBuffer); const testBytes32Offset = new BigNumber(prefixByteArrayBuffer.byteLength); const newByteArray = await libBytes .publicWriteBytes32(combinedByteArray, testBytes32Offset, testBytes32B) .callAsync(); const newByteArrayBuffer = ethUtil.toBuffer(newByteArray); const bytes32FromOffsetBuffer = newByteArrayBuffer.slice(prefixByteArrayBuffer.byteLength); const bytes32FromOffset = ethUtil.addHexPrefix(ethUtil.bufferToHex(bytes32FromOffsetBuffer)); return expect(bytes32FromOffset).to.be.equal(testBytes32B); }); it('should fail if the byte array is too short to hold a bytes32', async () => { const offset = new BigNumber(0); const byteLen = new BigNumber(fromHex(byteArrayShorterThan32Bytes).length); const expectedError = new LibBytesRevertErrors.InvalidByteOperationError( LibBytesRevertErrors.InvalidByteOperationErrorCodes.LengthGreaterThanOrEqualsThirtyTwoRequired, byteLen, new BigNumber(32), ); return expect( libBytes.publicWriteBytes32(byteArrayShorterThan32Bytes, offset, testBytes32).callAsync(), ).to.revertWith(expectedError); }); it('should fail if the length between the offset and end of the byte array is too short to hold a bytes32', async () => { const byteArray = byteArrayLongerThan32Bytes; const badOffset = new BigNumber(ethUtil.toBuffer(byteArray).byteLength); const expectedError = new LibBytesRevertErrors.InvalidByteOperationError( LibBytesRevertErrors.InvalidByteOperationErrorCodes.LengthGreaterThanOrEqualsThirtyTwoRequired, badOffset, badOffset.plus(new BigNumber(32)), ); return expect(libBytes.publicWriteBytes32(byteArray, badOffset, testBytes32).callAsync()).to.revertWith( expectedError, ); }); }); describe('readUint256', () => { it('should successfully read uint256 when the uint256 takes up the whole array', async () => { const formattedTestUint256 = new BN(testUint256.toString(10)); const testUint256AsBuffer = ethUtil.toBuffer(formattedTestUint256); const byteArray = ethUtil.bufferToHex(testUint256AsBuffer); const testUint256Offset = new BigNumber(0); const uint256 = await libBytes.publicReadUint256(byteArray, testUint256Offset).callAsync(); return expect(uint256).to.bignumber.equal(testUint256); }); it('should successfully read uint256 when it is offset in the array', async () => { const prefixByteArrayBuffer = ethUtil.toBuffer('0xabcdef'); const formattedTestUint256 = new BN(testUint256.toString(10)); const testUint256AsBuffer = ethUtil.toBuffer(formattedTestUint256); const combinedByteArrayBuffer = Buffer.concat([prefixByteArrayBuffer, testUint256AsBuffer]); const combinedByteArray = ethUtil.bufferToHex(combinedByteArrayBuffer); const testUint256Offset = new BigNumber(prefixByteArrayBuffer.byteLength); const uint256 = await libBytes.publicReadUint256(combinedByteArray, testUint256Offset).callAsync(); return expect(uint256).to.bignumber.equal(testUint256); }); it('should fail if the byte array is too short to hold a uint256', async () => { const offset = new BigNumber(0); const byteLen = new BigNumber(fromHex(byteArrayShorterThan32Bytes).length); const expectedError = new LibBytesRevertErrors.InvalidByteOperationError( LibBytesRevertErrors.InvalidByteOperationErrorCodes.LengthGreaterThanOrEqualsThirtyTwoRequired, byteLen, new BigNumber(32), ); return expect(libBytes.publicReadUint256(byteArrayShorterThan32Bytes, offset).callAsync()).to.revertWith( expectedError, ); }); it('should fail if the length between the offset and end of the byte array is too short to hold a uint256', async () => { const formattedTestUint256 = new BN(testUint256.toString(10)); const testUint256AsBuffer = ethUtil.toBuffer(formattedTestUint256); const byteArray = ethUtil.bufferToHex(testUint256AsBuffer); const badOffset = new BigNumber(testUint256AsBuffer.byteLength); const expectedError = new LibBytesRevertErrors.InvalidByteOperationError( LibBytesRevertErrors.InvalidByteOperationErrorCodes.LengthGreaterThanOrEqualsThirtyTwoRequired, badOffset, badOffset.plus(new BigNumber(32)), ); return expect(libBytes.publicReadUint256(byteArray, badOffset).callAsync()).to.revertWith(expectedError); }); }); describe('writeUint256', () => { it('should successfully write uint256 when the address takes up the whole array', async () => { const byteArray = testBytes32; const testUint256Offset = new BigNumber(0); const newByteArray = await libBytes .publicWriteUint256(byteArray, testUint256Offset, testUint256B) .callAsync(); const newByteArrayAsUint256 = new BigNumber(newByteArray, 16); return expect(newByteArrayAsUint256).to.be.bignumber.equal(testUint256B); }); it('should successfully write uint256 when it is offset in the array', async () => { const bytes32ByteArrayBuffer = ethUtil.toBuffer(testBytes32); const prefixByteArrayBuffer = ethUtil.toBuffer('0xabcdef'); const combinedByteArrayBuffer = Buffer.concat([prefixByteArrayBuffer, bytes32ByteArrayBuffer]); const combinedByteArray = ethUtil.bufferToHex(combinedByteArrayBuffer); const testUint256Offset = new BigNumber(prefixByteArrayBuffer.byteLength); const newByteArray = await libBytes .publicWriteUint256(combinedByteArray, testUint256Offset, testUint256B) .callAsync(); const newByteArrayBuffer = ethUtil.toBuffer(newByteArray); const uint256FromOffsetBuffer = newByteArrayBuffer.slice(prefixByteArrayBuffer.byteLength); const uint256FromOffset = new BigNumber( ethUtil.addHexPrefix(ethUtil.bufferToHex(uint256FromOffsetBuffer)), 16, ); return expect(uint256FromOffset).to.be.bignumber.equal(testUint256B); }); it('should fail if the byte array is too short to hold a uint256', async () => { const offset = new BigNumber(0); const byteLen = new BigNumber(fromHex(byteArrayShorterThan32Bytes).length); const expectedError = new LibBytesRevertErrors.InvalidByteOperationError( LibBytesRevertErrors.InvalidByteOperationErrorCodes.LengthGreaterThanOrEqualsThirtyTwoRequired, byteLen, new BigNumber(32), ); return expect( libBytes.publicWriteUint256(byteArrayShorterThan32Bytes, offset, testUint256).callAsync(), ).to.revertWith(expectedError); }); it('should fail if the length between the offset and end of the byte array is too short to hold a uint256', async () => { const byteArray = byteArrayLongerThan32Bytes; const badOffset = new BigNumber(ethUtil.toBuffer(byteArray).byteLength); const expectedError = new LibBytesRevertErrors.InvalidByteOperationError( LibBytesRevertErrors.InvalidByteOperationErrorCodes.LengthGreaterThanOrEqualsThirtyTwoRequired, badOffset, badOffset.plus(new BigNumber(32)), ); return expect(libBytes.publicWriteUint256(byteArray, badOffset, testUint256).callAsync()).to.revertWith( expectedError, ); }); }); describe('readBytes4', () => { // AssertionError: expected promise to be rejected with an error including 'revert' but it was fulfilled with '0x08c379a0' it('should revert if byte array has a length < 4', async () => { const byteArrayLessThan4Bytes = '0x010101'; const byteLen = fromHex(byteArrayLessThan4Bytes).length; const offset = new BigNumber(0); const expectedError = new LibBytesRevertErrors.InvalidByteOperationError( LibBytesRevertErrors.InvalidByteOperationErrorCodes.LengthGreaterThanOrEqualsFourRequired, new BigNumber(byteLen), // length of byteArrayLessThan4Bytes new BigNumber(4), ); return expect(libBytes.publicReadBytes4(byteArrayLessThan4Bytes, offset).callAsync()).to.revertWith( expectedError, ); }); it('should return the first 4 bytes of a byte array of arbitrary length', async () => { const first4Bytes = await libBytes .publicReadBytes4(byteArrayLongerThan32Bytes, new BigNumber(0)) .callAsync(); const expectedFirst4Bytes = byteArrayLongerThan32Bytes.slice(0, 10); expect(first4Bytes).to.equal(expectedFirst4Bytes); }); it('should successfully read bytes4 when the bytes4 takes up the whole array', async () => { const testBytes4Offset = new BigNumber(0); const bytes4 = await libBytes.publicReadBytes4(testBytes4, testBytes4Offset).callAsync(); return expect(bytes4).to.be.equal(testBytes4); }); it('should successfully read bytes4 when it is offset in the array', async () => { const bytes4ByteArrayBuffer = ethUtil.toBuffer(testBytes4); const prefixByteArrayBuffer = ethUtil.toBuffer('0xabcdef'); const combinedByteArrayBuffer = Buffer.concat([prefixByteArrayBuffer, bytes4ByteArrayBuffer]); const combinedByteArray = ethUtil.bufferToHex(combinedByteArrayBuffer); const testBytes4Offset = new BigNumber(prefixByteArrayBuffer.byteLength); const bytes4 = await libBytes.publicReadBytes4(combinedByteArray, testBytes4Offset).callAsync(); return expect(bytes4).to.be.equal(testBytes4); }); it('should fail if the length between the offset and end of the byte array is too short to hold a bytes4', async () => { const badOffset = new BigNumber(ethUtil.toBuffer(testBytes4).byteLength); const byteLen = new BigNumber(fromHex(testBytes4).length); const expectedError = new LibBytesRevertErrors.InvalidByteOperationError( LibBytesRevertErrors.InvalidByteOperationErrorCodes.LengthGreaterThanOrEqualsFourRequired, byteLen, badOffset.plus(new BigNumber(4)), ); return expect(libBytes.publicReadBytes4(testBytes4, badOffset).callAsync()).to.revertWith(expectedError); }); }); describe('memCopy', () => { // Create memory 0x000102...FF const memSize = 256; const memory = new Uint8Array(memSize).map((_, i) => i); const memHex = toHex(memory); // Reference implementation to test against const refMemcpy = (mem: Uint8Array, dest: number, source: number, length: number): Uint8Array => Uint8Array.from(mem).copyWithin(dest, source, source + length); // Test vectors: destination, source, length, job description type Tests = Array<[number, number, number, string]>; const test = (tests: Tests) => tests.forEach(([dest, source, length, job]) => it(job, async () => { const expected = refMemcpy(memory, dest, source, length); const resultStr = await libBytes .testMemcpy(memHex, new BigNumber(dest), new BigNumber(source), new BigNumber(length)) .callAsync(); const result = fromHex(resultStr); expect(result).to.deep.equal(expected); }), ); test([[0, 0, 0, 'copies zero bytes with overlap']]); describe('copies forward', () => test([ [128, 0, 0, 'zero bytes'], [128, 0, 1, 'one byte'], [128, 0, 11, 'eleven bytes'], [128, 0, 31, 'thirty-one bytes'], [128, 0, 32, 'one word'], [128, 0, 64, 'two words'], [128, 0, 96, 'three words'], [128, 0, 33, 'one word and one byte'], [128, 0, 72, 'two words and eight bytes'], [128, 0, 100, 'three words and four bytes'], ])); describe('copies forward within one word', () => test([ [16, 0, 0, 'zero bytes'], [16, 0, 1, 'one byte'], [16, 0, 11, 'eleven bytes'], [16, 0, 16, 'sixteen bytes'], ])); describe('copies forward with one byte overlap', () => test([ [0, 0, 1, 'one byte'], [10, 0, 11, 'eleven bytes'], [30, 0, 31, 'thirty-one bytes'], [31, 0, 32, 'one word'], [32, 0, 33, 'one word and one byte'], [71, 0, 72, 'two words and eight bytes'], [99, 0, 100, 'three words and four bytes'], ])); describe('copies forward with thirty-one bytes overlap', () => test([ [0, 0, 31, 'thirty-one bytes'], [1, 0, 32, 'one word'], [2, 0, 33, 'one word and one byte'], [41, 0, 72, 'two words and eight bytes'], [69, 0, 100, 'three words and four bytes'], ])); describe('copies forward with one word overlap', () => test([ [0, 0, 32, 'one word'], [1, 0, 33, 'one word and one byte'], [41, 0, 72, 'two words and eight bytes'], [69, 0, 100, 'three words and four bytes'], ])); describe('copies forward with one word and one byte overlap', () => test([ [0, 0, 33, 'one word and one byte'], [40, 0, 72, 'two words and eight bytes'], [68, 0, 100, 'three words and four bytes'], ])); describe('copies forward with two words overlap', () => test([ [0, 0, 64, 'two words'], [8, 0, 72, 'two words and eight bytes'], [36, 0, 100, 'three words and four bytes'], ])); describe('copies forward within one word and one byte overlap', () => test([ [0, 0, 1, 'one byte'], [10, 0, 11, 'eleven bytes'], [15, 0, 16, 'sixteen bytes'], ])); describe('copies backward', () => test([ [0, 128, 0, 'zero bytes'], [0, 128, 1, 'one byte'], [0, 128, 11, 'eleven bytes'], [0, 128, 31, 'thirty-one bytes'], [0, 128, 32, 'one word'], [0, 128, 64, 'two words'], [0, 128, 96, 'three words'], [0, 128, 33, 'one word and one byte'], [0, 128, 72, 'two words and eight bytes'], [0, 128, 100, 'three words and four bytes'], ])); describe('copies backward within one word', () => test([ [0, 16, 0, 'zero bytes'], [0, 16, 1, 'one byte'], [0, 16, 11, 'eleven bytes'], [0, 16, 16, 'sixteen bytes'], ])); describe('copies backward with one byte overlap', () => test([ [0, 0, 1, 'one byte'], [0, 10, 11, 'eleven bytes'], [0, 30, 31, 'thirty-one bytes'], [0, 31, 32, 'one word'], [0, 32, 33, 'one word and one byte'], [0, 71, 72, 'two words and eight bytes'], [0, 99, 100, 'three words and four bytes'], ])); describe('copies backward with thirty-one bytes overlap', () => test([ [0, 0, 31, 'thirty-one bytes'], [0, 1, 32, 'one word'], [0, 2, 33, 'one word and one byte'], [0, 41, 72, 'two words and eight bytes'], [0, 69, 100, 'three words and four bytes'], ])); describe('copies backward with one word overlap', () => test([ [0, 0, 32, 'one word'], [0, 1, 33, 'one word and one byte'], [0, 41, 72, 'two words and eight bytes'], [0, 69, 100, 'three words and four bytes'], ])); describe('copies backward with one word and one byte overlap', () => test([ [0, 0, 33, 'one word and one byte'], [0, 40, 72, 'two words and eight bytes'], [0, 68, 100, 'three words and four bytes'], ])); describe('copies backward with two words overlap', () => test([ [0, 0, 64, 'two words'], [0, 8, 72, 'two words and eight bytes'], [0, 36, 100, 'three words and four bytes'], ])); describe('copies forward within one word and one byte overlap', () => test([ [0, 0, 1, 'one byte'], [0, 10, 11, 'eleven bytes'], [0, 15, 16, 'sixteen bytes'], ])); }); describe('slice', () => { it('should revert if from > to', async () => { const from = new BigNumber(1); const to = new BigNumber(0); const expectedError = new LibBytesRevertErrors.InvalidByteOperationError( LibBytesRevertErrors.InvalidByteOperationErrorCodes.FromLessThanOrEqualsToRequired, from, to, ); return expect(libBytes.publicSlice(byteArrayLongerThan32Bytes, from, to).callAsync()).to.revertWith( expectedError, ); }); it('should return a byte array of length 0 if from == to', async () => { const from = new BigNumber(0); const to = from; const [result, original] = await libBytes.publicSlice(byteArrayLongerThan32Bytes, from, to).callAsync(); expect(original).to.eq(byteArrayLongerThan32Bytes); expect(result).to.eq(constants.NULL_BYTES); }); it('should return a byte array of length 0 if from == to == b.length', async () => { const byteLen = fromHex(byteArrayLongerThan32Bytes).length; const from = new BigNumber(byteLen); const to = from; const [result, original] = await libBytes.publicSlice(byteArrayLongerThan32Bytes, from, to).callAsync(); expect(original).to.eq(byteArrayLongerThan32Bytes); expect(result).to.eq(constants.NULL_BYTES); }); it('should revert if to > input.length', async () => { const byteLen: number = (byteArrayLongerThan32Bytes.length - 2) / 2; const from = new BigNumber(0); const to = new BigNumber(byteLen).plus(1); const expectedError = new LibBytesRevertErrors.InvalidByteOperationError( LibBytesRevertErrors.InvalidByteOperationErrorCodes.ToLessThanOrEqualsLengthRequired, to, new BigNumber(byteLen), ); return expect(libBytes.publicSlice(byteArrayLongerThan32Bytes, from, to).callAsync()).to.revertWith( expectedError, ); }); it('should slice a section of the input', async () => { const from = new BigNumber(1); const to = new BigNumber(2); const [result, original] = await libBytes.publicSlice(byteArrayLongerThan32Bytes, from, to).callAsync(); const expectedResult = `0x${byteArrayLongerThan32Bytes.slice(4, 6)}`; expect(original).to.eq(byteArrayLongerThan32Bytes); expect(result).to.eq(expectedResult); }); it('should copy the entire input if from = 0 and to = input.length', async () => { const byteLen = fromHex(byteArrayLongerThan32Bytes).length; const from = new BigNumber(0); const to = new BigNumber(byteLen); const [result, original] = await libBytes.publicSlice(byteArrayLongerThan32Bytes, from, to).callAsync(); expect(original).to.eq(byteArrayLongerThan32Bytes); expect(result).to.eq(byteArrayLongerThan32Bytes); }); }); describe('sliceDestructive', () => { it('should revert if from > to', async () => { const from = new BigNumber(1); const to = new BigNumber(0); const expectedError = new LibBytesRevertErrors.InvalidByteOperationError( LibBytesRevertErrors.InvalidByteOperationErrorCodes.FromLessThanOrEqualsToRequired, from, to, ); return expect(libBytes.publicSlice(byteArrayLongerThan32Bytes, from, to).callAsync()).to.revertWith( expectedError, ); }); it('should return a byte array of length 0 if from == to', async () => { const from = new BigNumber(0); const to = from; const [result] = await libBytes.publicSliceDestructive(byteArrayLongerThan32Bytes, from, to).callAsync(); expect(result).to.eq(constants.NULL_BYTES); }); it('should return a byte array of length 0 if from == to == b.length', async () => { const byteLen = fromHex(byteArrayLongerThan32Bytes).length; const from = new BigNumber(byteLen); const to = from; const [result] = await libBytes.publicSliceDestructive(byteArrayLongerThan32Bytes, from, to).callAsync(); expect(result).to.eq(constants.NULL_BYTES); }); it('should revert if to > input.length', async () => { const byteLen = fromHex(byteArrayLongerThan32Bytes).length; const from = new BigNumber(0); const to = new BigNumber(byteLen).plus(1); const expectedError = new LibBytesRevertErrors.InvalidByteOperationError( LibBytesRevertErrors.InvalidByteOperationErrorCodes.ToLessThanOrEqualsLengthRequired, to, new BigNumber(byteLen), ); return expect( libBytes.publicSliceDestructive(byteArrayLongerThan32Bytes, from, to).callAsync(), ).to.revertWith(expectedError); }); it('should slice a section of the input', async () => { const from = new BigNumber(1); const to = new BigNumber(2); const [result] = await libBytes.publicSliceDestructive(byteArrayLongerThan32Bytes, from, to).callAsync(); const expectedResult = `0x${byteArrayLongerThan32Bytes.slice(4, 6)}`; expect(result).to.eq(expectedResult); }); it('should copy the entire input if from = 0 and to = input.length', async () => { const byteLen = fromHex(byteArrayLongerThan32Bytes).length; const from = new BigNumber(0); const to = new BigNumber(byteLen); const [result] = await libBytes.publicSliceDestructive(byteArrayLongerThan32Bytes, from, to).callAsync(); expect(result).to.eq(byteArrayLongerThan32Bytes); }); }); describe('writeLength', () => { it('should return a null byte array if length is set to 0', async () => { const result = await libBytes .publicWriteLength(byteArrayLongerThan32Bytes, constants.ZERO_AMOUNT, constants.NULL_BYTES) .callAsync(); expect(result).to.eq(constants.NULL_BYTES); }); it('should return the same byte array if length is unchanged', async () => { const byteLen = fromHex(byteArrayLongerThan32Bytes).length; const result = await libBytes .publicWriteLength(byteArrayLongerThan32Bytes, new BigNumber(byteLen), constants.NULL_BYTES) .callAsync(); expect(result).to.eq(byteArrayLongerThan32Bytes); }); it('should shave off lower order bytes if new length is less than original', async () => { const byteLen = fromHex(byteArrayLongerThan32Bytes).length; const newLen = new BigNumber(byteLen).dividedToIntegerBy(2); const result = await libBytes .publicWriteLength(byteArrayLongerThan32Bytes, newLen, constants.NULL_BYTES) .callAsync(); expect(result).to.eq(byteArrayLongerThan32Bytes.slice(0, newLen.multipliedBy(2).plus(2).toNumber())); }); it("should right pad with 0's if new length is greater than original and no extra bytes are appended", async () => { const byteLen = fromHex(byteArrayLongerThan32Bytes).length; const newLen = new BigNumber(byteLen).multipliedBy(2); const result = await libBytes .publicWriteLength(byteArrayLongerThan32Bytes, newLen, constants.NULL_BYTES) .callAsync(); expect(result).to.eq(`${byteArrayLongerThan32Bytes}${'0'.repeat(byteArrayLongerThan32Bytes.length - 2)}`); }); it('should right pad with extra bytes if specified', async () => { const byteLen = fromHex(byteArrayLongerThan32Bytes).length; const newLen = new BigNumber(byteLen).multipliedBy(2); const result = await libBytes .publicWriteLength(byteArrayLongerThan32Bytes, newLen, byteArrayLongerThan32Bytes) .callAsync(); expect(result).to.eq(`${byteArrayLongerThan32Bytes}${byteArrayLongerThan32Bytes.slice(2)}`); }); it('should result in the same byte array if length is reduced and reset', async () => { const byteLen = fromHex(byteArrayLongerThan32Bytes).length; const tempByteLen = new BigNumber(byteLen).dividedToIntegerBy(2); return expect( libBytes.assertBytesUnchangedAfterLengthReset(byteArrayLongerThan32Bytes, tempByteLen).callAsync(), ).to.be.fulfilled(''); }); it('should result in the same byte array if length is increased and reset', async () => { const byteLen = fromHex(byteArrayLongerThan32Bytes).length; const tempByteLen = new BigNumber(byteLen).multipliedBy(2); return expect( libBytes.assertBytesUnchangedAfterLengthReset(byteArrayLongerThan32Bytes, tempByteLen).callAsync(), ).to.be.fulfilled(''); }); }); });