forked from Qortal/Brooklyn
99 lines
3.5 KiB
Python
99 lines
3.5 KiB
Python
|
# Copyright © 2020 Arm Ltd and Contributors. All rights reserved.
|
||
|
# SPDX-License-Identifier: MIT
|
||
|
|
||
|
"""
|
||
|
Contains functions specific to decoding and processing inference results for YOLO V3 Tiny models.
|
||
|
"""
|
||
|
|
||
|
import cv2
|
||
|
import numpy as np
|
||
|
|
||
|
|
||
|
def iou(box1: list, box2: list):
|
||
|
"""
|
||
|
Calculates the intersection-over-union (IoU) value for two bounding boxes.
|
||
|
|
||
|
Args:
|
||
|
box1: Array of positions for first bounding box
|
||
|
in the form [x_min, y_min, x_max, y_max].
|
||
|
box2: Array of positions for second bounding box.
|
||
|
|
||
|
Returns:
|
||
|
Calculated intersection-over-union (IoU) value for two bounding boxes.
|
||
|
"""
|
||
|
area_box1 = (box1[2] - box1[0]) * (box1[3] - box1[1])
|
||
|
area_box2 = (box2[2] - box2[0]) * (box2[3] - box2[1])
|
||
|
|
||
|
if area_box1 <= 0 or area_box2 <= 0:
|
||
|
iou_value = 0
|
||
|
else:
|
||
|
y_min_intersection = max(box1[1], box2[1])
|
||
|
x_min_intersection = max(box1[0], box2[0])
|
||
|
y_max_intersection = min(box1[3], box2[3])
|
||
|
x_max_intersection = min(box1[2], box2[2])
|
||
|
|
||
|
area_intersection = max(0, y_max_intersection - y_min_intersection) *\
|
||
|
max(0, x_max_intersection - x_min_intersection)
|
||
|
area_union = area_box1 + area_box2 - area_intersection
|
||
|
|
||
|
try:
|
||
|
iou_value = area_intersection / area_union
|
||
|
except ZeroDivisionError:
|
||
|
iou_value = 0
|
||
|
|
||
|
return iou_value
|
||
|
|
||
|
|
||
|
def yolo_processing(output: np.ndarray, confidence_threshold=0.40, iou_threshold=0.40):
|
||
|
"""
|
||
|
Performs non-maximum suppression on input detections. Any detections
|
||
|
with IOU value greater than given threshold are suppressed.
|
||
|
|
||
|
Args:
|
||
|
output: Vector of outputs from network.
|
||
|
confidence_threshold: Selects only strong detections above this value.
|
||
|
iou_threshold: Filters out boxes with IOU values above this value.
|
||
|
|
||
|
Returns:
|
||
|
A list of detected objects in the form [class, [box positions], confidence]
|
||
|
"""
|
||
|
if len(output) != 1:
|
||
|
raise RuntimeError('Number of outputs from YOLO model does not equal 1')
|
||
|
|
||
|
# Find the array index of detections with confidence value above threshold
|
||
|
confidence_det = output[0][:, :, 4][0]
|
||
|
detections = list(np.where(confidence_det > confidence_threshold)[0])
|
||
|
all_det, nms_det = [], []
|
||
|
|
||
|
# Create list of all detections above confidence threshold
|
||
|
for d in detections:
|
||
|
box_positions = list(output[0][:, d, :4][0])
|
||
|
confidence_score = output[0][:, d, 4][0]
|
||
|
class_idx = np.argmax(output[0][:, d, 5:])
|
||
|
all_det.append((class_idx, box_positions, confidence_score))
|
||
|
|
||
|
# Suppress detections with IOU value above threshold
|
||
|
while all_det:
|
||
|
element = int(np.argmax([all_det[i][2] for i in range(len(all_det))]))
|
||
|
nms_det.append(all_det.pop(element))
|
||
|
all_det = [*filter(lambda x: (iou(x[1], nms_det[-1][1]) <= iou_threshold), [det for det in all_det])]
|
||
|
return nms_det
|
||
|
|
||
|
|
||
|
def yolo_resize_factor(video: cv2.VideoCapture, input_binding_info: tuple):
|
||
|
"""
|
||
|
Gets a multiplier to scale the bounding box positions to
|
||
|
their correct position in the frame.
|
||
|
|
||
|
Args:
|
||
|
video: Video capture object, contains information about data source.
|
||
|
input_binding_info: Contains shape of model input layer.
|
||
|
|
||
|
Returns:
|
||
|
Resizing factor to scale box coordinates to output frame size.
|
||
|
"""
|
||
|
frame_height = video.get(cv2.CAP_PROP_FRAME_HEIGHT)
|
||
|
frame_width = video.get(cv2.CAP_PROP_FRAME_WIDTH)
|
||
|
model_height, model_width = list(input_binding_info[1].GetShape())[1:3]
|
||
|
return max(frame_height, frame_width) / max(model_height, model_width)
|