mirror of
https://github.com/Qortal/pirate-librustzcash.git
synced 2025-02-11 17:55:46 +00:00
Auto merge of #38 - mmaker:feature/legendre-symbol, r=ebfull
Add Legendre symbol.
This commit is contained in:
commit
57de78f4f1
@ -166,6 +166,7 @@ macro_rules! curve_impl {
|
||||
fn into_projective(&self) -> $projective {
|
||||
(*self).into()
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
impl Rand for $projective {
|
||||
@ -1480,7 +1481,7 @@ pub mod g2 {
|
||||
if let Some(y) = rhs.sqrt() {
|
||||
let mut negy = y;
|
||||
negy.negate();
|
||||
|
||||
|
||||
let p = G2Affine {
|
||||
x: x,
|
||||
y: if y < negy { y } else { negy },
|
||||
|
@ -810,6 +810,18 @@ impl Fq {
|
||||
}
|
||||
|
||||
impl SqrtField for Fq {
|
||||
|
||||
fn legendre(&self) -> ::LegendreSymbol {
|
||||
use ::LegendreSymbol::*;
|
||||
|
||||
// s = self^((q - 1) // 2)
|
||||
let s = self.pow([0xdcff7fffffffd555, 0xf55ffff58a9ffff, 0xb39869507b587b12,
|
||||
0xb23ba5c279c2895f, 0x258dd3db21a5d66b, 0xd0088f51cbff34d]);
|
||||
if s == Fq::zero() { Zero }
|
||||
else if s == Fq::one() { QuadraticResidue }
|
||||
else { QuadraticNonResidue }
|
||||
}
|
||||
|
||||
fn sqrt(&self) -> Option<Self> {
|
||||
// Shank's algorithm for q mod 4 = 3
|
||||
// https://eprint.iacr.org/2012/685.pdf (page 9, algorithm 2)
|
||||
@ -832,6 +844,7 @@ impl SqrtField for Fq {
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#[test]
|
||||
fn test_b_coeff() {
|
||||
assert_eq!(Fq::from_repr(FqRepr::from(4)).unwrap(), B_COEFF);
|
||||
@ -1303,12 +1316,12 @@ fn test_fq_sub_assign() {
|
||||
let mut tmp = Fq(FqRepr([0x531221a410efc95b, 0x72819306027e9717, 0x5ecefb937068b746, 0x97de59cd6feaefd7, 0xdc35c51158644588, 0xb2d176c04f2100]));
|
||||
tmp.sub_assign(&Fq(FqRepr([0x98910d20877e4ada, 0x940c983013f4b8ba, 0xf677dc9b8345ba33, 0xbef2ce6b7f577eba, 0xe1ae288ac3222c44, 0x5968bb602790806])));
|
||||
assert_eq!(tmp, Fq(FqRepr([0x748014838971292c, 0xfd20fad49fddde5c, 0xcf87f198e3d3f336, 0x3d62d6e6e41883db, 0x45a3443cd88dc61b, 0x151d57aaf755ff94])));
|
||||
|
||||
|
||||
// Test the opposite subtraction which doesn't test reduction.
|
||||
tmp = Fq(FqRepr([0x98910d20877e4ada, 0x940c983013f4b8ba, 0xf677dc9b8345ba33, 0xbef2ce6b7f577eba, 0xe1ae288ac3222c44, 0x5968bb602790806]));
|
||||
tmp.sub_assign(&Fq(FqRepr([0x531221a410efc95b, 0x72819306027e9717, 0x5ecefb937068b746, 0x97de59cd6feaefd7, 0xdc35c51158644588, 0xb2d176c04f2100])));
|
||||
assert_eq!(tmp, Fq(FqRepr([0x457eeb7c768e817f, 0x218b052a117621a3, 0x97a8e10812dd02ed, 0x2714749e0f6c8ee3, 0x57863796abde6bc, 0x4e3ba3f4229e706])));
|
||||
|
||||
|
||||
// Test for sensible results with zero
|
||||
tmp = Fq(FqRepr::from(0));
|
||||
tmp.sub_assign(&Fq(FqRepr::from(0)));
|
||||
@ -1779,3 +1792,21 @@ fn test_fq_ordering() {
|
||||
fn fq_repr_tests() {
|
||||
::tests::repr::random_repr_tests::<FqRepr>();
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq_legendre() {
|
||||
use ::LegendreSymbol::*;
|
||||
|
||||
assert_eq!(QuadraticResidue, Fq::one().legendre());
|
||||
assert_eq!(Zero, Fq::zero().legendre());
|
||||
|
||||
assert_eq!(QuadraticNonResidue, Fq::from_repr(FqRepr::from(2)).unwrap().legendre());
|
||||
assert_eq!(QuadraticResidue, Fq::from_repr(FqRepr::from(4)).unwrap().legendre());
|
||||
|
||||
let e = FqRepr([0x52a112f249778642, 0xd0bedb989b7991f, 0xdad3b6681aa63c05,
|
||||
0xf2efc0bb4721b283, 0x6057a98f18c24733, 0x1022c2fd122889e4]);
|
||||
assert_eq!(QuadraticNonResidue, Fq::from_repr(e).unwrap().legendre());
|
||||
let e = FqRepr([0x6dae594e53a96c74, 0x19b16ca9ba64b37b, 0x5c764661a59bfc68,
|
||||
0xaa346e9b31c60a, 0x346059f9d87a9fa9, 0x1d61ac6bfd5c88b]);
|
||||
assert_eq!(QuadraticResidue, Fq::from_repr(e).unwrap().legendre());
|
||||
}
|
||||
|
@ -44,6 +44,17 @@ impl Fq2 {
|
||||
self.c0.sub_assign(&self.c1);
|
||||
self.c1.add_assign(&t0);
|
||||
}
|
||||
|
||||
/// Norm of Fq2 as extension field in i over Fq
|
||||
pub fn norm(&self) -> Fq {
|
||||
let mut t0 = self.c0;
|
||||
let mut t1 = self.c1;
|
||||
t0.square();
|
||||
t1.square();
|
||||
t1.add_assign(&t0);
|
||||
|
||||
t1
|
||||
}
|
||||
}
|
||||
|
||||
impl Rand for Fq2 {
|
||||
@ -145,6 +156,11 @@ impl Field for Fq2 {
|
||||
}
|
||||
|
||||
impl SqrtField for Fq2 {
|
||||
|
||||
fn legendre(&self) -> ::LegendreSymbol {
|
||||
self.norm().legendre()
|
||||
}
|
||||
|
||||
fn sqrt(&self) -> Option<Self> {
|
||||
// Algorithm 9, https://eprint.iacr.org/2012/685.pdf
|
||||
|
||||
@ -412,6 +428,19 @@ fn test_fq2_sqrt() {
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq2_legendre() {
|
||||
use ::LegendreSymbol::*;
|
||||
|
||||
assert_eq!(Zero, Fq2::zero().legendre());
|
||||
// i^2 = -1
|
||||
let mut m1 = Fq2::one();
|
||||
m1.negate();
|
||||
assert_eq!(QuadraticResidue, m1.legendre());
|
||||
m1.mul_by_nonresidue();
|
||||
assert_eq!(QuadraticNonResidue, m1.legendre());
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
use rand::{SeedableRng, XorShiftRng};
|
||||
|
||||
@ -549,7 +578,7 @@ fn bench_fq2_sqrt(b: &mut ::test::Bencher) {
|
||||
#[test]
|
||||
fn fq2_field_tests() {
|
||||
use ::PrimeField;
|
||||
|
||||
|
||||
::tests::field::random_field_tests::<Fq2>();
|
||||
::tests::field::random_sqrt_tests::<Fq2>();
|
||||
::tests::field::random_frobenius_tests::<Fq2, _>(super::fq::Fq::char(), 13);
|
||||
|
@ -1,4 +1,5 @@
|
||||
use ::{Field, PrimeField, SqrtField, PrimeFieldRepr, PrimeFieldDecodingError};
|
||||
use ::LegendreSymbol::*;
|
||||
|
||||
// r = 52435875175126190479447740508185965837690552500527637822603658699938581184513
|
||||
const MODULUS: FrRepr = FrRepr([0xffffffff00000001, 0x53bda402fffe5bfe, 0x3339d80809a1d805, 0x73eda753299d7d48]);
|
||||
@ -551,49 +552,54 @@ impl Fr {
|
||||
}
|
||||
|
||||
impl SqrtField for Fr {
|
||||
|
||||
fn legendre(&self) -> ::LegendreSymbol {
|
||||
// s = self^((r - 1) // 2)
|
||||
let s = self.pow([0x7fffffff80000000, 0xa9ded2017fff2dff, 0x199cec0404d0ec02, 0x39f6d3a994cebea4]);
|
||||
if s == Self::zero() { Zero }
|
||||
else if s == Self::one() { QuadraticResidue }
|
||||
else { QuadraticNonResidue }
|
||||
}
|
||||
|
||||
fn sqrt(&self) -> Option<Self> {
|
||||
// Tonelli-Shank's algorithm for q mod 16 = 1
|
||||
// https://eprint.iacr.org/2012/685.pdf (page 12, algorithm 5)
|
||||
match self.legendre() {
|
||||
Zero => Some(*self),
|
||||
QuadraticNonResidue => None,
|
||||
QuadraticResidue => {
|
||||
let mut c = Fr(ROOT_OF_UNITY);
|
||||
// r = self^((t + 1) // 2)
|
||||
let mut r = self.pow([0x7fff2dff80000000, 0x4d0ec02a9ded201, 0x94cebea4199cec04, 0x39f6d3a9]);
|
||||
// t = self^t
|
||||
let mut t = self.pow([0xfffe5bfeffffffff, 0x9a1d80553bda402, 0x299d7d483339d808, 0x73eda753]);
|
||||
let mut m = S;
|
||||
|
||||
if self.is_zero() {
|
||||
return Some(*self);
|
||||
}
|
||||
|
||||
// if self^((r - 1) // 2) != 1
|
||||
if self.pow([0x7fffffff80000000, 0xa9ded2017fff2dff, 0x199cec0404d0ec02, 0x39f6d3a994cebea4]) != Self::one() {
|
||||
None
|
||||
} else {
|
||||
let mut c = Fr(ROOT_OF_UNITY);
|
||||
// r = self^((t + 1) // 2)
|
||||
let mut r = self.pow([0x7fff2dff80000000, 0x4d0ec02a9ded201, 0x94cebea4199cec04, 0x39f6d3a9]);
|
||||
// t = self^t
|
||||
let mut t = self.pow([0xfffe5bfeffffffff, 0x9a1d80553bda402, 0x299d7d483339d808, 0x73eda753]);
|
||||
let mut m = S;
|
||||
|
||||
while t != Self::one() {
|
||||
while t != Self::one() {
|
||||
let mut i = 1;
|
||||
{
|
||||
let mut t2i = t;
|
||||
t2i.square();
|
||||
loop {
|
||||
if t2i == Self::one() {
|
||||
break;
|
||||
}
|
||||
{
|
||||
let mut t2i = t;
|
||||
t2i.square();
|
||||
i += 1;
|
||||
loop {
|
||||
if t2i == Self::one() {
|
||||
break;
|
||||
}
|
||||
t2i.square();
|
||||
i += 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for _ in 0..(m - i - 1) {
|
||||
for _ in 0..(m - i - 1) {
|
||||
c.square();
|
||||
}
|
||||
r.mul_assign(&c);
|
||||
c.square();
|
||||
t.mul_assign(&c);
|
||||
m = i;
|
||||
}
|
||||
r.mul_assign(&c);
|
||||
c.square();
|
||||
t.mul_assign(&c);
|
||||
m = i;
|
||||
}
|
||||
|
||||
Some(r)
|
||||
Some(r)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -778,6 +784,17 @@ fn test_fr_repr_sub_noborrow() {
|
||||
assert!(!x.sub_noborrow(&FrRepr([0xffffffff00000001, 0x53bda402fffe5bfe, 0x3339d80809a1d805, 0x73eda753299d7d48])))
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fr_legendre() {
|
||||
assert_eq!(QuadraticResidue, Fr::one().legendre());
|
||||
assert_eq!(Zero, Fr::zero().legendre());
|
||||
|
||||
let e = FrRepr([0x0dbc5349cd5664da, 0x8ac5b6296e3ae29d, 0x127cb819feceaa3b, 0x3a6b21fb03867191]);
|
||||
assert_eq!(QuadraticResidue, Fr::from_repr(e).unwrap().legendre());
|
||||
let e = FrRepr([0x96341aefd047c045, 0x9b5f4254500a4d65, 0x1ee08223b68ac240, 0x31d9cd545c0ec7c6]);
|
||||
assert_eq!(QuadraticNonResidue, Fr::from_repr(e).unwrap().legendre());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fr_repr_add_nocarry() {
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
@ -1015,12 +1032,12 @@ fn test_fr_sub_assign() {
|
||||
let mut tmp = Fr(FrRepr([0x6a68c64b6f735a2b, 0xd5f4d143fe0a1972, 0x37c17f3829267c62, 0xa2f37391f30915c]));
|
||||
tmp.sub_assign(&Fr(FrRepr([0xade5adacdccb6190, 0xaa21ee0f27db3ccd, 0x2550f4704ae39086, 0x591d1902e7c5ba27])));
|
||||
assert_eq!(tmp, Fr(FrRepr([0xbc83189d92a7f89c, 0x7f908737d62d38a3, 0x45aa62cfe7e4c3e1, 0x24ffc5896108547d])));
|
||||
|
||||
|
||||
// Test the opposite subtraction which doesn't test reduction.
|
||||
tmp = Fr(FrRepr([0xade5adacdccb6190, 0xaa21ee0f27db3ccd, 0x2550f4704ae39086, 0x591d1902e7c5ba27]));
|
||||
tmp.sub_assign(&Fr(FrRepr([0x6a68c64b6f735a2b, 0xd5f4d143fe0a1972, 0x37c17f3829267c62, 0xa2f37391f30915c])));
|
||||
assert_eq!(tmp, Fr(FrRepr([0x437ce7616d580765, 0xd42d1ccb29d1235b, 0xed8f753821bd1423, 0x4eede1c9c89528ca])));
|
||||
|
||||
|
||||
// Test for sensible results with zero
|
||||
tmp = Fr(FrRepr::from(0));
|
||||
tmp.sub_assign(&Fr(FrRepr::from(0)));
|
||||
|
11
src/lib.rs
11
src/lib.rs
@ -327,11 +327,15 @@ pub trait Field: Sized +
|
||||
/// This trait represents an element of a field that has a square root operation described for it.
|
||||
pub trait SqrtField: Field
|
||||
{
|
||||
/// Returns the Legendre symbol of the field element.
|
||||
fn legendre(&self) -> LegendreSymbol;
|
||||
|
||||
/// Returns the square root of the field element, if it is
|
||||
/// quadratic residue.
|
||||
fn sqrt(&self) -> Option<Self>;
|
||||
}
|
||||
|
||||
|
||||
/// This trait represents a wrapper around a biginteger which can encode any element of a particular
|
||||
/// prime field. It is a smart wrapper around a sequence of `u64` limbs, least-significant digit
|
||||
/// first.
|
||||
@ -409,6 +413,13 @@ pub trait PrimeFieldRepr: Sized +
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, PartialEq)]
|
||||
pub enum LegendreSymbol {
|
||||
Zero = 0,
|
||||
QuadraticResidue = 1,
|
||||
QuadraticNonResidue = -1
|
||||
}
|
||||
|
||||
/// An error that may occur when trying to interpret a `PrimeFieldRepr` as a
|
||||
/// `PrimeField` element.
|
||||
#[derive(Debug)]
|
||||
|
@ -1,5 +1,5 @@
|
||||
use rand::{Rng, SeedableRng, XorShiftRng};
|
||||
use ::{SqrtField, Field, PrimeField};
|
||||
use ::{SqrtField, Field, PrimeField, LegendreSymbol};
|
||||
|
||||
pub fn random_frobenius_tests<F: Field, C: AsRef<[u64]>>(characteristic: C, maxpower: usize) {
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
@ -26,6 +26,7 @@ pub fn random_sqrt_tests<F: SqrtField>() {
|
||||
let a = F::rand(&mut rng);
|
||||
let mut b = a;
|
||||
b.square();
|
||||
assert_eq!(b.legendre(), LegendreSymbol::QuadraticResidue);
|
||||
|
||||
let b = b.sqrt().unwrap();
|
||||
let mut negb = b;
|
||||
@ -38,6 +39,8 @@ pub fn random_sqrt_tests<F: SqrtField>() {
|
||||
for _ in 0..10000 {
|
||||
let mut b = c;
|
||||
b.square();
|
||||
assert_eq!(b.legendre(), LegendreSymbol::QuadraticResidue);
|
||||
|
||||
b = b.sqrt().unwrap();
|
||||
|
||||
if b != c {
|
||||
|
Loading…
x
Reference in New Issue
Block a user