209 lines
5.3 KiB
Rust
Raw Normal View History

extern crate pairing;
extern crate rand;
extern crate bit_vec;
extern crate futures;
extern crate futures_cpupool;
extern crate num_cpus;
extern crate crossbeam;
use pairing::{Engine, Field};
use std::ops::{Add, Sub};
use std::io;
pub mod multicore;
pub mod domain;
pub mod groth16;
pub mod multiexp;
// TODO: remove this from public API?
pub use self::multiexp::{DensityTracker, FullDensity, multiexp};
#[derive(Debug)]
pub enum Error {
PolynomialDegreeTooLarge,
MalformedVerifyingKey,
AssignmentMissing,
UnexpectedIdentity,
UnconstrainedVariable(Variable),
IoError(io::Error)
}
impl From<io::Error> for Error {
fn from(e: io::Error) -> Error {
Error::IoError(e)
}
}
#[derive(Copy, Clone, Debug)]
pub struct Variable(Index);
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
enum Index {
Input(usize),
Aux(usize)
}
pub struct LinearCombination<E: Engine>(Vec<(Index, E::Fr)>);
impl<E: Engine> Clone for LinearCombination<E> {
fn clone(&self) -> LinearCombination<E> {
LinearCombination(self.0.clone())
}
}
impl<E: Engine> LinearCombination<E> {
pub fn zero() -> LinearCombination<E> {
LinearCombination(vec![])
}
pub fn eval(
self,
mut input_density: Option<&mut DensityTracker>,
mut aux_density: Option<&mut DensityTracker>,
input_assignment: &[E::Fr],
aux_assignment: &[E::Fr]
) -> E::Fr
{
let mut acc = E::Fr::zero();
for (index, coeff) in self.0.into_iter() {
let mut tmp;
match index {
Index::Input(i) => {
tmp = input_assignment[i];
if let Some(ref mut v) = input_density {
v.inc(i);
}
},
Index::Aux(i) => {
tmp = aux_assignment[i];
if let Some(ref mut v) = aux_density {
v.inc(i);
}
}
}
if coeff == E::Fr::one() {
acc.add_assign(&tmp);
} else {
tmp.mul_assign(&coeff);
acc.add_assign(&tmp);
}
}
acc
}
}
impl<E: Engine> Add<Variable> for LinearCombination<E> {
type Output = LinearCombination<E>;
fn add(self, other: Variable) -> LinearCombination<E> {
self + (E::Fr::one(), other)
}
}
impl<E: Engine> Sub<Variable> for LinearCombination<E> {
type Output = LinearCombination<E>;
fn sub(self, other: Variable) -> LinearCombination<E> {
self - (E::Fr::one(), other)
}
}
impl<E: Engine> Add<(E::Fr, Variable)> for LinearCombination<E> {
type Output = LinearCombination<E>;
fn add(mut self, (coeff, var): (E::Fr, Variable)) -> LinearCombination<E> {
let mut must_insert = true;
for &mut (ref index, ref mut fr) in &mut self.0 {
if *index == var.0 {
fr.add_assign(&coeff);
must_insert = false;
break;
}
}
if must_insert {
self.0.push((var.0, coeff));
}
self
}
}
impl<E: Engine> Sub<(E::Fr, Variable)> for LinearCombination<E> {
type Output = LinearCombination<E>;
fn sub(self, (mut coeff, var): (E::Fr, Variable)) -> LinearCombination<E> {
coeff.negate();
self + (coeff, var)
}
}
impl<'a, E: Engine> Add<&'a LinearCombination<E>> for LinearCombination<E> {
type Output = LinearCombination<E>;
fn add(mut self, other: &'a LinearCombination<E>) -> LinearCombination<E> {
for &(k, v) in other.0.iter() {
self = self + (v, Variable(k));
}
self
}
}
impl<'a, E: Engine> Sub<&'a LinearCombination<E>> for LinearCombination<E> {
type Output = LinearCombination<E>;
fn sub(mut self, other: &'a LinearCombination<E>) -> LinearCombination<E> {
for &(k, v) in other.0.iter() {
self = self - (v, Variable(k));
}
self
}
}
pub trait Circuit<E: Engine> {
type InputMap: Input<E>;
/// Synthesize the circuit into a rank-1 quadratic constraint system
#[must_use]
fn synthesize<CS: ConstraintSystem<E>>(self, cs: &mut CS) -> Result<Self::InputMap, Error>;
}
pub trait Input<E: Engine> {
/// Synthesize the circuit, except with additional access to public input
/// variables
fn synthesize<CS: PublicConstraintSystem<E>>(self, cs: &mut CS) -> Result<(), Error>;
}
pub trait PublicConstraintSystem<E: Engine>: ConstraintSystem<E> {
/// Allocate a public input that the verifier knows. The provided function is used to
/// determine the assignment of the variable.
fn alloc_input<F: FnOnce() -> Result<E::Fr, Error>>(&mut self, f: F) -> Result<Variable, Error>;
}
pub trait ConstraintSystem<E: Engine> {
/// Return the "one" input variable
fn one() -> Variable {
Variable(Index::Input(0))
}
/// Allocate a private variable in the constraint system. The provided function is used to
/// determine the assignment of the variable.
fn alloc<F: FnOnce() -> Result<E::Fr, Error>>(&mut self, f: F) -> Result<Variable, Error>;
/// Enforce that `A` * `B` = `C`.
fn enforce(
&mut self,
a: LinearCombination<E>,
b: LinearCombination<E>,
c: LinearCombination<E>
);
}