QortalOS Brooklyn for Raspberry Pi 4
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

955 lines
28 KiB

/**
* Broadcom Secondary Memory Interface driver
*
* Written by Luke Wren <[email protected]>
* Copyright (c) 2015, Raspberry Pi (Trading) Ltd.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The names of the above-listed copyright holders may not be used
* to endorse or promote products derived from this software without
* specific prior written permission.
*
* ALTERNATIVELY, this software may be distributed under the terms of the
* GNU General Public License ("GPL") version 2, as published by the Free
* Software Foundation.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
* IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <linux/clk.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/of_address.h>
#include <linux/of_platform.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/pagemap.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/semaphore.h>
#include <linux/spinlock.h>
#include <linux/io.h>
#define BCM2835_SMI_IMPLEMENTATION
#include <linux/broadcom/bcm2835_smi.h>
#define DRIVER_NAME "smi-bcm2835"
#define N_PAGES_FROM_BYTES(n) ((n + PAGE_SIZE-1) / PAGE_SIZE)
#define DMA_WRITE_TO_MEM true
#define DMA_READ_FROM_MEM false
struct bcm2835_smi_instance {
struct device *dev;
struct smi_settings settings;
__iomem void *smi_regs_ptr;
dma_addr_t smi_regs_busaddr;
struct dma_chan *dma_chan;
struct dma_slave_config dma_config;
struct bcm2835_smi_bounce_info bounce;
struct scatterlist buffer_sgl;
struct clk *clk;
/* Sometimes we are called into in an atomic context (e.g. by
JFFS2 + MTD) so we can't use a mutex */
spinlock_t transaction_lock;
};
/****************************************************************************
*
* SMI peripheral setup
*
***************************************************************************/
static inline void write_smi_reg(struct bcm2835_smi_instance *inst,
u32 val, unsigned reg)
{
writel(val, inst->smi_regs_ptr + reg);
}
static inline u32 read_smi_reg(struct bcm2835_smi_instance *inst, unsigned reg)
{
return readl(inst->smi_regs_ptr + reg);
}
/* Token-paste macro for e.g SMIDSR_RSTROBE -> value of SMIDSR_RSTROBE_MASK */
#define _CONCAT(x, y) x##y
#define CONCAT(x, y) _CONCAT(x, y)
#define SET_BIT_FIELD(dest, field, bits) ((dest) = \
((dest) & ~CONCAT(field, _MASK)) | (((bits) << CONCAT(field, _OFFS))& \
CONCAT(field, _MASK)))
#define GET_BIT_FIELD(src, field) (((src) & \
CONCAT(field, _MASK)) >> CONCAT(field, _OFFS))
static void smi_dump_context_labelled(struct bcm2835_smi_instance *inst,
const char *label)
{
dev_err(inst->dev, "SMI context dump: %s", label);
dev_err(inst->dev, "SMICS: 0x%08x", read_smi_reg(inst, SMICS));
dev_err(inst->dev, "SMIL: 0x%08x", read_smi_reg(inst, SMIL));
dev_err(inst->dev, "SMIDSR: 0x%08x", read_smi_reg(inst, SMIDSR0));
dev_err(inst->dev, "SMIDSW: 0x%08x", read_smi_reg(inst, SMIDSW0));
dev_err(inst->dev, "SMIDC: 0x%08x", read_smi_reg(inst, SMIDC));
dev_err(inst->dev, "SMIFD: 0x%08x", read_smi_reg(inst, SMIFD));
dev_err(inst->dev, " ");
}
static inline void smi_dump_context(struct bcm2835_smi_instance *inst)
{
smi_dump_context_labelled(inst, "");
}
static void smi_get_default_settings(struct bcm2835_smi_instance *inst)
{
struct smi_settings *settings = &inst->settings;
settings->data_width = SMI_WIDTH_16BIT;
settings->pack_data = true;
settings->read_setup_time = 1;
settings->read_hold_time = 1;
settings->read_pace_time = 1;
settings->read_strobe_time = 3;
settings->write_setup_time = settings->read_setup_time;
settings->write_hold_time = settings->read_hold_time;
settings->write_pace_time = settings->read_pace_time;
settings->write_strobe_time = settings->read_strobe_time;
settings->dma_enable = true;
settings->dma_passthrough_enable = false;
settings->dma_read_thresh = 0x01;
settings->dma_write_thresh = 0x3f;
settings->dma_panic_read_thresh = 0x20;
settings->dma_panic_write_thresh = 0x20;
}
void bcm2835_smi_set_regs_from_settings(struct bcm2835_smi_instance *inst)
{
struct smi_settings *settings = &inst->settings;
int smidsr_temp = 0, smidsw_temp = 0, smics_temp,
smidcs_temp, smidc_temp = 0;
spin_lock(&inst->transaction_lock);
/* temporarily disable the peripheral: */
smics_temp = read_smi_reg(inst, SMICS);
write_smi_reg(inst, 0, SMICS);
smidcs_temp = read_smi_reg(inst, SMIDCS);
write_smi_reg(inst, 0, SMIDCS);
if (settings->pack_data)
smics_temp |= SMICS_PXLDAT;
else
smics_temp &= ~SMICS_PXLDAT;
SET_BIT_FIELD(smidsr_temp, SMIDSR_RWIDTH, settings->data_width);
SET_BIT_FIELD(smidsr_temp, SMIDSR_RSETUP, settings->read_setup_time);
SET_BIT_FIELD(smidsr_temp, SMIDSR_RHOLD, settings->read_hold_time);
SET_BIT_FIELD(smidsr_temp, SMIDSR_RPACE, settings->read_pace_time);
SET_BIT_FIELD(smidsr_temp, SMIDSR_RSTROBE, settings->read_strobe_time);
write_smi_reg(inst, smidsr_temp, SMIDSR0);
SET_BIT_FIELD(smidsw_temp, SMIDSW_WWIDTH, settings->data_width);
if (settings->data_width == SMI_WIDTH_8BIT)
smidsw_temp |= SMIDSW_WSWAP;
else
smidsw_temp &= ~SMIDSW_WSWAP;
SET_BIT_FIELD(smidsw_temp, SMIDSW_WSETUP, settings->write_setup_time);
SET_BIT_FIELD(smidsw_temp, SMIDSW_WHOLD, settings->write_hold_time);
SET_BIT_FIELD(smidsw_temp, SMIDSW_WPACE, settings->write_pace_time);
SET_BIT_FIELD(smidsw_temp, SMIDSW_WSTROBE,
settings->write_strobe_time);
write_smi_reg(inst, smidsw_temp, SMIDSW0);
SET_BIT_FIELD(smidc_temp, SMIDC_REQR, settings->dma_read_thresh);
SET_BIT_FIELD(smidc_temp, SMIDC_REQW, settings->dma_write_thresh);
SET_BIT_FIELD(smidc_temp, SMIDC_PANICR,
settings->dma_panic_read_thresh);
SET_BIT_FIELD(smidc_temp, SMIDC_PANICW,
settings->dma_panic_write_thresh);
if (settings->dma_passthrough_enable) {
smidc_temp |= SMIDC_DMAP;
smidsr_temp |= SMIDSR_RDREQ;
write_smi_reg(inst, smidsr_temp, SMIDSR0);
smidsw_temp |= SMIDSW_WDREQ;
write_smi_reg(inst, smidsw_temp, SMIDSW0);
} else
smidc_temp &= ~SMIDC_DMAP;
if (settings->dma_enable)
smidc_temp |= SMIDC_DMAEN;
else
smidc_temp &= ~SMIDC_DMAEN;
write_smi_reg(inst, smidc_temp, SMIDC);
/* re-enable (if was previously enabled) */
write_smi_reg(inst, smics_temp, SMICS);
write_smi_reg(inst, smidcs_temp, SMIDCS);
spin_unlock(&inst->transaction_lock);
}
EXPORT_SYMBOL(bcm2835_smi_set_regs_from_settings);
struct smi_settings *bcm2835_smi_get_settings_from_regs
(struct bcm2835_smi_instance *inst)
{
struct smi_settings *settings = &inst->settings;
int smidsr, smidsw, smidc;
spin_lock(&inst->transaction_lock);
smidsr = read_smi_reg(inst, SMIDSR0);
smidsw = read_smi_reg(inst, SMIDSW0);
smidc = read_smi_reg(inst, SMIDC);
settings->pack_data = (read_smi_reg(inst, SMICS) & SMICS_PXLDAT) ?
true : false;
settings->data_width = GET_BIT_FIELD(smidsr, SMIDSR_RWIDTH);
settings->read_setup_time = GET_BIT_FIELD(smidsr, SMIDSR_RSETUP);
settings->read_hold_time = GET_BIT_FIELD(smidsr, SMIDSR_RHOLD);
settings->read_pace_time = GET_BIT_FIELD(smidsr, SMIDSR_RPACE);
settings->read_strobe_time = GET_BIT_FIELD(smidsr, SMIDSR_RSTROBE);
settings->write_setup_time = GET_BIT_FIELD(smidsw, SMIDSW_WSETUP);
settings->write_hold_time = GET_BIT_FIELD(smidsw, SMIDSW_WHOLD);
settings->write_pace_time = GET_BIT_FIELD(smidsw, SMIDSW_WPACE);
settings->write_strobe_time = GET_BIT_FIELD(smidsw, SMIDSW_WSTROBE);
settings->dma_read_thresh = GET_BIT_FIELD(smidc, SMIDC_REQR);
settings->dma_write_thresh = GET_BIT_FIELD(smidc, SMIDC_REQW);
settings->dma_panic_read_thresh = GET_BIT_FIELD(smidc, SMIDC_PANICR);
settings->dma_panic_write_thresh = GET_BIT_FIELD(smidc, SMIDC_PANICW);
settings->dma_passthrough_enable = (smidc & SMIDC_DMAP) ? true : false;
settings->dma_enable = (smidc & SMIDC_DMAEN) ? true : false;
spin_unlock(&inst->transaction_lock);
return settings;
}
EXPORT_SYMBOL(bcm2835_smi_get_settings_from_regs);
static inline void smi_set_address(struct bcm2835_smi_instance *inst,
unsigned int address)
{
int smia_temp = 0, smida_temp = 0;
SET_BIT_FIELD(smia_temp, SMIA_ADDR, address);
SET_BIT_FIELD(smida_temp, SMIDA_ADDR, address);
/* Write to both address registers - user doesn't care whether we're
doing programmed or direct transfers. */
write_smi_reg(inst, smia_temp, SMIA);
write_smi_reg(inst, smida_temp, SMIDA);
}
static void smi_setup_regs(struct bcm2835_smi_instance *inst)
{
dev_dbg(inst->dev, "Initialising SMI registers...");
/* Disable the peripheral if already enabled */
write_smi_reg(inst, 0, SMICS);
write_smi_reg(inst, 0, SMIDCS);
smi_get_default_settings(inst);
bcm2835_smi_set_regs_from_settings(inst);
smi_set_address(inst, 0);
write_smi_reg(inst, read_smi_reg(inst, SMICS) | SMICS_ENABLE, SMICS);
write_smi_reg(inst, read_smi_reg(inst, SMIDCS) | SMIDCS_ENABLE,
SMIDCS);
}
/****************************************************************************
*
* Low-level SMI access functions
* Other modules should use the exported higher-level functions e.g.
* bcm2835_smi_write_buf() unless they have a good reason to use these
*
***************************************************************************/
static inline uint32_t smi_read_single_word(struct bcm2835_smi_instance *inst)
{
int timeout = 0;
write_smi_reg(inst, SMIDCS_ENABLE, SMIDCS);
write_smi_reg(inst, SMIDCS_ENABLE | SMIDCS_START, SMIDCS);
/* Make sure things happen in the right order...*/
mb();
while (!(read_smi_reg(inst, SMIDCS) & SMIDCS_DONE) &&
++timeout < 10000)
;
if (timeout < 10000)
return read_smi_reg(inst, SMIDD);
dev_err(inst->dev,
"SMI direct read timed out (is the clock set up correctly?)");
return 0;
}
static inline void smi_write_single_word(struct bcm2835_smi_instance *inst,
uint32_t data)
{
int timeout = 0;
write_smi_reg(inst, SMIDCS_ENABLE | SMIDCS_WRITE, SMIDCS);
write_smi_reg(inst, data, SMIDD);
write_smi_reg(inst, SMIDCS_ENABLE | SMIDCS_WRITE | SMIDCS_START,
SMIDCS);
while (!(read_smi_reg(inst, SMIDCS) & SMIDCS_DONE) &&
++timeout < 10000)
;
if (timeout >= 10000)
dev_err(inst->dev,
"SMI direct write timed out (is the clock set up correctly?)");
}
/* Initiates a programmed read into the read FIFO. It is up to the caller to
* read data from the FIFO - either via paced DMA transfer,
* or polling SMICS_RXD to check whether data is available.
* SMICS_ACTIVE will go low upon completion. */
static void smi_init_programmed_read(struct bcm2835_smi_instance *inst,
int num_transfers)
{
int smics_temp;
/* Disable the peripheral: */
smics_temp = read_smi_reg(inst, SMICS) & ~(SMICS_ENABLE | SMICS_WRITE);
write_smi_reg(inst, smics_temp, SMICS);
while (read_smi_reg(inst, SMICS) & SMICS_ENABLE)
;
/* Program the transfer count: */
write_smi_reg(inst, num_transfers, SMIL);
/* re-enable and start: */
smics_temp |= SMICS_ENABLE;
write_smi_reg(inst, smics_temp, SMICS);
smics_temp |= SMICS_CLEAR;
/* Just to be certain: */
mb();
while (read_smi_reg(inst, SMICS) & SMICS_ACTIVE)
;
write_smi_reg(inst, smics_temp, SMICS);
smics_temp |= SMICS_START;
write_smi_reg(inst, smics_temp, SMICS);
}
/* Initiates a programmed write sequence, using data from the write FIFO.
* It is up to the caller to initiate a DMA transfer before calling,
* or use another method to keep the write FIFO topped up.
* SMICS_ACTIVE will go low upon completion.
*/
static void smi_init_programmed_write(struct bcm2835_smi_instance *inst,
int num_transfers)
{
int smics_temp;
/* Disable the peripheral: */
smics_temp = read_smi_reg(inst, SMICS) & ~SMICS_ENABLE;
write_smi_reg(inst, smics_temp, SMICS);
while (read_smi_reg(inst, SMICS) & SMICS_ENABLE)
;
/* Program the transfer count: */
write_smi_reg(inst, num_transfers, SMIL);
/* setup, re-enable and start: */
smics_temp |= SMICS_WRITE | SMICS_ENABLE;
write_smi_reg(inst, smics_temp, SMICS);
smics_temp |= SMICS_START;
write_smi_reg(inst, smics_temp, SMICS);
}
/* Initiate a read and then poll FIFO for data, reading out as it appears. */
static void smi_read_fifo(struct bcm2835_smi_instance *inst,
uint32_t *dest, int n_bytes)
{
if (read_smi_reg(inst, SMICS) & SMICS_RXD) {
smi_dump_context_labelled(inst,
"WARNING: read FIFO not empty at start of read call.");
while (read_smi_reg(inst, SMICS))
;
}
/* Dispatch the read: */
if (inst->settings.data_width == SMI_WIDTH_8BIT)
smi_init_programmed_read(inst, n_bytes);
else if (inst->settings.data_width == SMI_WIDTH_16BIT)
smi_init_programmed_read(inst, n_bytes / 2);
else {
dev_err(inst->dev, "Unsupported data width for read.");
return;
}
/* Poll FIFO to keep it empty */
while (!(read_smi_reg(inst, SMICS) & SMICS_DONE))
if (read_smi_reg(inst, SMICS) & SMICS_RXD)
*dest++ = read_smi_reg(inst, SMID);
/* Ensure that the FIFO is emptied */
if (read_smi_reg(inst, SMICS) & SMICS_RXD) {
int fifo_count;
fifo_count = GET_BIT_FIELD(read_smi_reg(inst, SMIFD),
SMIFD_FCNT);
while (fifo_count--)
*dest++ = read_smi_reg(inst, SMID);
}
if (!(read_smi_reg(inst, SMICS) & SMICS_DONE))
smi_dump_context_labelled(inst,
"WARNING: transaction finished but done bit not set.");
if (read_smi_reg(inst, SMICS) & SMICS_RXD)
smi_dump_context_labelled(inst,
"WARNING: read FIFO not empty at end of read call.");
}
/* Initiate a write, and then keep the FIFO topped up. */
static void smi_write_fifo(struct bcm2835_smi_instance *inst,
uint32_t *src, int n_bytes)
{
int i, timeout = 0;
/* Empty FIFOs if not already so */
if (!(read_smi_reg(inst, SMICS) & SMICS_TXE)) {
smi_dump_context_labelled(inst,
"WARNING: write fifo not empty at start of write call.");
write_smi_reg(inst, read_smi_reg(inst, SMICS) | SMICS_CLEAR,
SMICS);
}
/* Initiate the transfer */
if (inst->settings.data_width == SMI_WIDTH_8BIT)
smi_init_programmed_write(inst, n_bytes);
else if (inst->settings.data_width == SMI_WIDTH_16BIT)
smi_init_programmed_write(inst, n_bytes / 2);
else {
dev_err(inst->dev, "Unsupported data width for write.");
return;
}
/* Fill the FIFO: */
for (i = 0; i < (n_bytes - 1) / 4 + 1; ++i) {
while (!(read_smi_reg(inst, SMICS) & SMICS_TXD))
;
write_smi_reg(inst, *src++, SMID);
}
/* Busy wait... */
while (!(read_smi_reg(inst, SMICS) & SMICS_DONE) && ++timeout <
1000000)
;
if (timeout >= 1000000)
smi_dump_context_labelled(inst,
"Timed out on write operation!");
if (!(read_smi_reg(inst, SMICS) & SMICS_TXE))
smi_dump_context_labelled(inst,
"WARNING: FIFO not empty at end of write operation.");
}
/****************************************************************************
*
* SMI DMA operations
*
***************************************************************************/
/* Disable SMI and put it into the correct direction before doing DMA setup.
Stops spurious DREQs during setup. Peripheral is re-enabled by init_*() */
static void smi_disable(struct bcm2835_smi_instance *inst,
enum dma_transfer_direction direction)
{
int smics_temp = read_smi_reg(inst, SMICS) & ~SMICS_ENABLE;
if (direction == DMA_DEV_TO_MEM)
smics_temp &= ~SMICS_WRITE;
else
smics_temp |= SMICS_WRITE;
write_smi_reg(inst, smics_temp, SMICS);
while (read_smi_reg(inst, SMICS) & SMICS_ACTIVE)
;
}
static struct scatterlist *smi_scatterlist_from_buffer(
struct bcm2835_smi_instance *inst,
dma_addr_t buf,
size_t len,
struct scatterlist *sg)
{
sg_init_table(sg, 1);
sg_dma_address(sg) = buf;
sg_dma_len(sg) = len;
return sg;
}
static void smi_dma_callback_user_copy(void *param)
{
/* Notify the bottom half that a chunk is ready for user copy */
struct bcm2835_smi_instance *inst =
(struct bcm2835_smi_instance *)param;
up(&inst->bounce.callback_sem);
}
/* Creates a descriptor, assigns the given callback, and submits the
descriptor to dmaengine. Does not block - can queue up multiple
descriptors and then wait for them all to complete.
sg_len is the number of control blocks, NOT the number of bytes.
dir can be DMA_MEM_TO_DEV or DMA_DEV_TO_MEM.
callback can be NULL - in this case it is not called. */
static inline struct dma_async_tx_descriptor *smi_dma_submit_sgl(
struct bcm2835_smi_instance *inst,
struct scatterlist *sgl,
size_t sg_len,
enum dma_transfer_direction dir,
dma_async_tx_callback callback)
{
struct dma_async_tx_descriptor *desc;
desc = dmaengine_prep_slave_sg(inst->dma_chan,
sgl,
sg_len,
dir,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK |
DMA_PREP_FENCE);
if (!desc) {
dev_err(inst->dev, "read_sgl: dma slave preparation failed!");
write_smi_reg(inst, read_smi_reg(inst, SMICS) & ~SMICS_ACTIVE,
SMICS);
while (read_smi_reg(inst, SMICS) & SMICS_ACTIVE)
cpu_relax();
write_smi_reg(inst, read_smi_reg(inst, SMICS) | SMICS_ACTIVE,
SMICS);
return NULL;
}
desc->callback = callback;
desc->callback_param = inst;
if (dmaengine_submit(desc) < 0)
return NULL;
return desc;
}
/* NB this function blocks until the transfer is complete */
static void
smi_dma_read_sgl(struct bcm2835_smi_instance *inst,
struct scatterlist *sgl, size_t sg_len, size_t n_bytes)
{
struct dma_async_tx_descriptor *desc;
/* Disable SMI and set to read before dispatching DMA - if SMI is in
* write mode and TX fifo is empty, it will generate a DREQ which may
* cause the read DMA to complete before the SMI read command is even
* dispatched! We want to dispatch DMA before SMI read so that reading
* is gapless, for logic analyser.
*/
smi_disable(inst, DMA_DEV_TO_MEM);
desc = smi_dma_submit_sgl(inst, sgl, sg_len, DMA_DEV_TO_MEM, NULL);
dma_async_issue_pending(inst->dma_chan);
if (inst->settings.data_width == SMI_WIDTH_8BIT)
smi_init_programmed_read(inst, n_bytes);
else
smi_init_programmed_read(inst, n_bytes / 2);
if (dma_wait_for_async_tx(desc) == DMA_ERROR)
smi_dump_context_labelled(inst, "DMA timeout!");
}
static void
smi_dma_write_sgl(struct bcm2835_smi_instance *inst,
struct scatterlist *sgl, size_t sg_len, size_t n_bytes)
{
struct dma_async_tx_descriptor *desc;
if (inst->settings.data_width == SMI_WIDTH_8BIT)
smi_init_programmed_write(inst, n_bytes);
else
smi_init_programmed_write(inst, n_bytes / 2);
desc = smi_dma_submit_sgl(inst, sgl, sg_len, DMA_MEM_TO_DEV, NULL);
dma_async_issue_pending(inst->dma_chan);
if (dma_wait_for_async_tx(desc) == DMA_ERROR)
smi_dump_context_labelled(inst, "DMA timeout!");
else
/* Wait for SMI to finish our writes */
while (!(read_smi_reg(inst, SMICS) & SMICS_DONE))
cpu_relax();
}
ssize_t bcm2835_smi_user_dma(
struct bcm2835_smi_instance *inst,
enum dma_transfer_direction dma_dir,
char __user *user_ptr, size_t count,
struct bcm2835_smi_bounce_info **bounce)
{
int chunk_no = 0, chunk_size, count_left = count;
struct scatterlist *sgl;
void (*init_trans_func)(struct bcm2835_smi_instance *, int);
spin_lock(&inst->transaction_lock);
if (dma_dir == DMA_DEV_TO_MEM)
init_trans_func = smi_init_programmed_read;
else
init_trans_func = smi_init_programmed_write;
smi_disable(inst, dma_dir);
sema_init(&inst->bounce.callback_sem, 0);
if (bounce)
*bounce = &inst->bounce;
while (count_left) {
chunk_size = count_left > DMA_BOUNCE_BUFFER_SIZE ?
DMA_BOUNCE_BUFFER_SIZE : count_left;
if (chunk_size == DMA_BOUNCE_BUFFER_SIZE) {
sgl =
&inst->bounce.sgl[chunk_no % DMA_BOUNCE_BUFFER_COUNT];
} else {
sgl = smi_scatterlist_from_buffer(
inst,
inst->bounce.phys[
chunk_no % DMA_BOUNCE_BUFFER_COUNT],
chunk_size,
&inst->buffer_sgl);
}
if (!smi_dma_submit_sgl(inst, sgl, 1, dma_dir,
smi_dma_callback_user_copy
)) {
dev_err(inst->dev, "sgl submit failed");
count = 0;
goto out;
}
count_left -= chunk_size;
chunk_no++;
}
dma_async_issue_pending(inst->dma_chan);
if (inst->settings.data_width == SMI_WIDTH_8BIT)
init_trans_func(inst, count);
else if (inst->settings.data_width == SMI_WIDTH_16BIT)
init_trans_func(inst, count / 2);
out:
spin_unlock(&inst->transaction_lock);
return count;
}
EXPORT_SYMBOL(bcm2835_smi_user_dma);
/****************************************************************************
*
* High level buffer transfer functions - for use by other drivers
*
***************************************************************************/
/* Buffer must be physically contiguous - i.e. kmalloc, not vmalloc! */
void bcm2835_smi_write_buf(
struct bcm2835_smi_instance *inst,
const void *buf, size_t n_bytes)
{
int odd_bytes = n_bytes & 0x3;
n_bytes -= odd_bytes;
spin_lock(&inst->transaction_lock);
if (n_bytes > DMA_THRESHOLD_BYTES) {
dma_addr_t phy_addr = dma_map_single(
inst->dev,
(void *)buf,
n_bytes,
DMA_TO_DEVICE);
struct scatterlist *sgl =
smi_scatterlist_from_buffer(inst, phy_addr, n_bytes,
&inst->buffer_sgl);
if (!sgl) {
smi_dump_context_labelled(inst,
"Error: could not create scatterlist for write!");
goto out;
}
smi_dma_write_sgl(inst, sgl, 1, n_bytes);
dma_unmap_single
(inst->dev, phy_addr, n_bytes, DMA_TO_DEVICE);
} else if (n_bytes) {
smi_write_fifo(inst, (uint32_t *) buf, n_bytes);
}
buf += n_bytes;
if (inst->settings.data_width == SMI_WIDTH_8BIT) {
while (odd_bytes--)
smi_write_single_word(inst, *(uint8_t *) (buf++));
} else {
while (odd_bytes >= 2) {
smi_write_single_word(inst, *(uint16_t *)buf);
buf += 2;
odd_bytes -= 2;
}
if (odd_bytes) {
/* Reading an odd number of bytes on a 16 bit bus is
a user bug. It's kinder to fail early and tell them
than to e.g. transparently give them the bottom byte
of a 16 bit transfer. */
dev_err(inst->dev,
"WARNING: odd number of bytes specified for wide transfer.");
dev_err(inst->dev,
"At least one byte dropped as a result.");
dump_stack();
}
}
out:
spin_unlock(&inst->transaction_lock);
}
EXPORT_SYMBOL(bcm2835_smi_write_buf);
void bcm2835_smi_read_buf(struct bcm2835_smi_instance *inst,
void *buf, size_t n_bytes)
{
/* SMI is inherently 32-bit, which causes surprising amounts of mess
for bytes % 4 != 0. Easiest to avoid this mess altogether
by handling remainder separately. */
int odd_bytes = n_bytes & 0x3;
spin_lock(&inst->transaction_lock);
n_bytes -= odd_bytes;
if (n_bytes > DMA_THRESHOLD_BYTES) {
dma_addr_t phy_addr = dma_map_single(inst->dev,
buf, n_bytes,
DMA_FROM_DEVICE);
struct scatterlist *sgl = smi_scatterlist_from_buffer(
inst, phy_addr, n_bytes,
&inst->buffer_sgl);
if (!sgl) {
smi_dump_context_labelled(inst,
"Error: could not create scatterlist for read!");
goto out;
}
smi_dma_read_sgl(inst, sgl, 1, n_bytes);
dma_unmap_single(inst->dev, phy_addr, n_bytes, DMA_FROM_DEVICE);
} else if (n_bytes) {
smi_read_fifo(inst, (uint32_t *)buf, n_bytes);
}
buf += n_bytes;
if (inst->settings.data_width == SMI_WIDTH_8BIT) {
while (odd_bytes--)
*((uint8_t *) (buf++)) = smi_read_single_word(inst);
} else {
while (odd_bytes >= 2) {
*(uint16_t *) buf = smi_read_single_word(inst);
buf += 2;
odd_bytes -= 2;
}
if (odd_bytes) {
dev_err(inst->dev,
"WARNING: odd number of bytes specified for wide transfer.");
dev_err(inst->dev,
"At least one byte dropped as a result.");
dump_stack();
}
}
out:
spin_unlock(&inst->transaction_lock);
}
EXPORT_SYMBOL(bcm2835_smi_read_buf);
void bcm2835_smi_set_address(struct bcm2835_smi_instance *inst,
unsigned int address)
{
spin_lock(&inst->transaction_lock);
smi_set_address(inst, address);
spin_unlock(&inst->transaction_lock);
}
EXPORT_SYMBOL(bcm2835_smi_set_address);
struct bcm2835_smi_instance *bcm2835_smi_get(struct device_node *node)
{
struct platform_device *pdev;
if (!node)
return NULL;
pdev = of_find_device_by_node(node);
if (!pdev)
return NULL;
return platform_get_drvdata(pdev);
}
EXPORT_SYMBOL(bcm2835_smi_get);
/****************************************************************************
*
* bcm2835_smi_probe - called when the driver is loaded.
*
***************************************************************************/
static int bcm2835_smi_dma_setup(struct bcm2835_smi_instance *inst)
{
int i, rv = 0;
inst->dma_chan = dma_request_slave_channel(inst->dev, "rx-tx");
inst->dma_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
inst->dma_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
inst->dma_config.src_addr = inst->smi_regs_busaddr + SMID;
inst->dma_config.dst_addr = inst->dma_config.src_addr;
/* Direction unimportant - always overridden by prep_slave_sg */
inst->dma_config.direction = DMA_DEV_TO_MEM;
dmaengine_slave_config(inst->dma_chan, &inst->dma_config);
/* Alloc and map bounce buffers */
for (i = 0; i < DMA_BOUNCE_BUFFER_COUNT; ++i) {
inst->bounce.buffer[i] =
dmam_alloc_coherent(inst->dev, DMA_BOUNCE_BUFFER_SIZE,
&inst->bounce.phys[i],
GFP_KERNEL);
if (!inst->bounce.buffer[i]) {
dev_err(inst->dev, "Could not allocate buffer!");
rv = -ENOMEM;
break;
}
smi_scatterlist_from_buffer(
inst,
inst->bounce.phys[i],
DMA_BOUNCE_BUFFER_SIZE,
&inst->bounce.sgl[i]
);
}
return rv;
}
static int bcm2835_smi_probe(struct platform_device *pdev)
{
int err;
struct device *dev = &pdev->dev;
struct device_node *node = dev->of_node;
struct resource *ioresource;
struct bcm2835_smi_instance *inst;
const __be32 *addr;
/* We require device tree support */
if (!node)
return -EINVAL;
/* Allocate buffers and instance data */
inst = devm_kzalloc(dev, sizeof(struct bcm2835_smi_instance),
GFP_KERNEL);
if (!inst)
return -ENOMEM;
inst->dev = dev;
spin_lock_init(&inst->transaction_lock);
ioresource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
inst->smi_regs_ptr = devm_ioremap_resource(dev, ioresource);
if (IS_ERR(inst->smi_regs_ptr)) {
err = PTR_ERR(inst->smi_regs_ptr);
goto err;
}
addr = of_get_address(node, 0, NULL, NULL);
inst->smi_regs_busaddr = be32_to_cpu(*addr);
err = bcm2835_smi_dma_setup(inst);
if (err)
goto err;
/* request clock */
inst->clk = devm_clk_get(dev, NULL);
if (!inst->clk)
goto err;
clk_prepare_enable(inst->clk);
/* Finally, do peripheral setup */
smi_setup_regs(inst);
platform_set_drvdata(pdev, inst);
dev_info(inst->dev, "initialised");
return 0;
err:
kfree(inst);
return err;
}
/****************************************************************************
*
* bcm2835_smi_remove - called when the driver is unloaded.
*
***************************************************************************/
static int bcm2835_smi_remove(struct platform_device *pdev)
{
struct bcm2835_smi_instance *inst = platform_get_drvdata(pdev);
struct device *dev = inst->dev;
dmaengine_terminate_all(inst->dma_chan);
dma_release_channel(inst->dma_chan);
clk_disable_unprepare(inst->clk);
dev_info(dev, "SMI device removed - OK");
return 0;
}
/****************************************************************************
*
* Register the driver with device tree
*
***************************************************************************/
static const struct of_device_id bcm2835_smi_of_match[] = {
{.compatible = "brcm,bcm2835-smi",},
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, bcm2835_smi_of_match);
static struct platform_driver bcm2835_smi_driver = {
.probe = bcm2835_smi_probe,
.remove = bcm2835_smi_remove,
.driver = {
.name = DRIVER_NAME,
.owner = THIS_MODULE,
.of_match_table = bcm2835_smi_of_match,
},
};
module_platform_driver(bcm2835_smi_driver);
MODULE_ALIAS("platform:smi-bcm2835");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Device driver for BCM2835's secondary memory interface");
MODULE_AUTHOR("Luke Wren <[email protected]>");