QortalOS Brooklyn for Raspberry Pi 4
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1135 lines
27 KiB

/*
* usb-stm32f103.c - USB driver for STM32F103
*
* Copyright (C) 2016, 2017, 2018 Flying Stone Technology
* Author: NIIBE Yutaka <[email protected]>
*
* This file is a part of Chopstx, a thread library for embedded.
*
* Chopstx is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Chopstx is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* As additional permission under GNU GPL version 3 section 7, you may
* distribute non-source form of the Program without the copy of the
* GNU GPL normally required by section 4, provided you inform the
* receipents of GNU GPL by a written offer.
*
*/
#include <stdint.h>
#include <stdlib.h>
#include "sys-stm32f103.h"
#include "usb_lld.h"
#include "usb_lld_driver.h"
#define REG_BASE (0x40005C00UL) /* USB_IP Peripheral Registers base address */
#define PMA_ADDR (0x40006000UL) /* USB_IP Packet Memory Area base address */
/* Control register */
#define CNTR ((volatile uint16_t *)(REG_BASE + 0x40))
/* Interrupt status register */
#define ISTR ((volatile uint16_t *)(REG_BASE + 0x44))
/* Frame number register */
#define FNR ((volatile uint16_t *)(REG_BASE + 0x48))
/* Device address register */
#define DADDR ((volatile uint16_t *)(REG_BASE + 0x4C))
/* Buffer Table address register */
#define BTABLE ((volatile uint16_t *)(REG_BASE + 0x50))
#define ISTR_CTR (0x8000) /* Correct TRansfer (read-only bit) */
#define ISTR_OVR (0x4000) /* OVeR/underrun (clear-only bit) */
#define ISTR_ERR (0x2000) /* ERRor (clear-only bit) */
#define ISTR_WKUP (0x1000) /* WaKe UP (clear-only bit) */
#define ISTR_SUSP (0x0800) /* SUSPend (clear-only bit) */
#define ISTR_RESET (0x0400) /* RESET (clear-only bit) */
#define ISTR_SOF (0x0200) /* Start Of Frame (clear-only bit) */
#define ISTR_ESOF (0x0100) /* Expected Start Of Frame (clear-only bit) */
#define ISTR_DIR (0x0010) /* DIRection of transaction (read-only bit) */
#define ISTR_EP_ID (0x000F) /* EndPoint IDentifier (read-only bit) */
#define CLR_OVR (~ISTR_OVR) /* clear OVeR/underrun bit*/
#define CLR_ERR (~ISTR_ERR) /* clear ERRor bit */
#define CLR_WKUP (~ISTR_WKUP) /* clear WaKe UP bit */
#define CLR_SUSP (~ISTR_SUSP) /* clear SUSPend bit */
#define CLR_RESET (~ISTR_RESET) /* clear RESET bit */
#define CLR_SOF (~ISTR_SOF) /* clear Start Of Frame bit */
#define CLR_ESOF (~ISTR_ESOF) /* clear Expected Start Of Frame bit */
#define CNTR_CTRM (0x8000) /* Correct TRansfer Mask */
#define CNTR_OVRM (0x4000) /* OVeR/underrun Mask */
#define CNTR_ERRM (0x2000) /* ERRor Mask */
#define CNTR_WKUPM (0x1000) /* WaKe UP Mask */
#define CNTR_SUSPM (0x0800) /* SUSPend Mask */
#define CNTR_RESETM (0x0400) /* RESET Mask */
#define CNTR_SOFM (0x0200) /* Start Of Frame Mask */
#define CNTR_ESOFM (0x0100) /* Expected Start Of Frame Mask */
#define CNTR_RESUME (0x0010) /* RESUME request */
#define CNTR_FSUSP (0x0008) /* Force SUSPend */
#define CNTR_LPMODE (0x0004) /* Low-power MODE */
#define CNTR_PDWN (0x0002) /* Power DoWN */
#define CNTR_FRES (0x0001) /* Force USB RESet */
#define DADDR_EF (0x80)
#define DADDR_ADD (0x7F)
#define EP_CTR_RX (0x8000) /* EndPoint Correct TRansfer RX */
#define EP_DTOG_RX (0x4000) /* EndPoint Data TOGGLE RX */
#define EPRX_STAT (0x3000) /* EndPoint RX STATus bit field */
#define EP_SETUP (0x0800) /* EndPoint SETUP */
#define EP_T_FIELD (0x0600) /* EndPoint TYPE */
#define EP_KIND (0x0100) /* EndPoint KIND */
#define EP_CTR_TX (0x0080) /* EndPoint Correct TRansfer TX */
#define EP_DTOG_TX (0x0040) /* EndPoint Data TOGGLE TX */
#define EPTX_STAT (0x0030) /* EndPoint TX STATus bit field */
#define EPADDR_FIELD (0x000F) /* EndPoint ADDRess FIELD */
#define EPREG_MASK (EP_CTR_RX|EP_SETUP|EP_T_FIELD|EP_KIND|EP_CTR_TX|EPADDR_FIELD)
/* STAT_TX[1:0] STATus for TX transfer */
#define EP_TX_DIS (0x0000) /* EndPoint TX DISabled */
#define EP_TX_STALL (0x0010) /* EndPoint TX STALLed */
#define EP_TX_NAK (0x0020) /* EndPoint TX NAKed */
#define EP_TX_VALID (0x0030) /* EndPoint TX VALID */
#define EPTX_DTOG1 (0x0010) /* EndPoint TX Data TOGgle bit1 */
#define EPTX_DTOG2 (0x0020) /* EndPoint TX Data TOGgle bit2 */
/* STAT_RX[1:0] STATus for RX transfer */
#define EP_RX_DIS (0x0000) /* EndPoint RX DISabled */
#define EP_RX_STALL (0x1000) /* EndPoint RX STALLed */
#define EP_RX_NAK (0x2000) /* EndPoint RX NAKed */
#define EP_RX_VALID (0x3000) /* EndPoint RX VALID */
#define EPRX_DTOG1 (0x1000) /* EndPoint RX Data TOGgle bit1 */
#define EPRX_DTOG2 (0x2000) /* EndPoint RX Data TOGgle bit1 */
static int usb_handle_transfer (struct usb_dev *dev, uint16_t istr_value);
static void st103_set_btable (void)
{
*BTABLE = 0;
}
static uint16_t st103_get_istr (void)
{
return *ISTR;
}
static void st103_set_istr (uint16_t istr)
{
*ISTR = istr;
}
static void st103_set_cntr (uint16_t cntr)
{
*CNTR = cntr;
}
static void st103_set_daddr (uint16_t daddr)
{
*DADDR = daddr | DADDR_EF;
}
static void st103_set_epreg (uint8_t ep_num, uint16_t value)
{
uint16_t *reg_p = (uint16_t *)(REG_BASE + ep_num*4);
*reg_p = value;
}
static uint16_t st103_get_epreg (uint8_t ep_num)
{
uint16_t *reg_p = (uint16_t *)(REG_BASE + ep_num*4);
return *reg_p;
}
static void st103_set_tx_addr (uint8_t ep_num, uint16_t addr)
{
uint16_t *reg_p = (uint16_t *)(PMA_ADDR + (ep_num*8+0)*2);
*reg_p = addr;
}
static uint16_t st103_get_tx_addr (uint8_t ep_num)
{
uint16_t *reg_p = (uint16_t *)(PMA_ADDR + (ep_num*8+0)*2);
return *reg_p;
}
static void st103_set_tx_count (uint8_t ep_num, uint16_t size)
{
uint16_t *reg_p = (uint16_t *)(PMA_ADDR + (ep_num*8+2)*2);
*reg_p = size;
}
static uint16_t st103_get_tx_count (uint8_t ep_num)
{
uint16_t *reg_p = (uint16_t *)(PMA_ADDR + (ep_num*8+2)*2);
return *reg_p & 0x03ff;
}
static void st103_set_rx_addr (uint8_t ep_num, uint16_t addr)
{
uint16_t *reg_p = (uint16_t *)(PMA_ADDR + (ep_num*8+4)*2);
*reg_p = addr;
}
static uint16_t st103_get_rx_addr (uint8_t ep_num)
{
uint16_t *reg_p = (uint16_t *)(PMA_ADDR + (ep_num*8+4)*2);
return *reg_p;
}
static void st103_set_rx_buf_size (uint8_t ep_num, uint16_t size)
{ /* Assume size is even */
uint16_t *reg_p = (uint16_t *)(PMA_ADDR + (ep_num*8+6)*2);
uint16_t value;
if (size <= 62)
value = (size & 0x3e) << 9;
else
value = 0x8000 | (((size >> 5) - 1) << 10);
*reg_p = value;
}
static uint16_t st103_get_rx_count (uint8_t ep_num)
{
uint16_t *reg_p = (uint16_t *)(PMA_ADDR + (ep_num*8+6)*2);
return *reg_p & 0x03ff;
}
static void st103_ep_clear_ctr_rx (uint8_t ep_num)
{
uint16_t value = st103_get_epreg (ep_num) & ~EP_CTR_RX & EPREG_MASK;
st103_set_epreg (ep_num, value);
}
static void st103_ep_clear_ctr_tx (uint8_t ep_num)
{
uint16_t value = st103_get_epreg (ep_num) & ~EP_CTR_TX & EPREG_MASK;
st103_set_epreg (ep_num, value);
}
static void st103_ep_set_rxtx_status (uint8_t ep_num, uint16_t st_rx,
uint16_t st_tx)
{
uint16_t value = st103_get_epreg (ep_num);
value &= (EPREG_MASK|EPRX_STAT|EPTX_STAT);
value ^= (EPRX_DTOG1 & st_rx);
value ^= (EPRX_DTOG2 & st_rx);
value ^= (EPTX_DTOG1 & st_tx);
value ^= (EPTX_DTOG2 & st_tx);
value |= EP_CTR_RX | EP_CTR_TX;
st103_set_epreg (ep_num, value);
}
static void st103_ep_set_rx_status (uint8_t ep_num, uint16_t st_rx)
{
uint16_t value = st103_get_epreg (ep_num);
value &= (EPREG_MASK|EPRX_STAT);
value ^= (EPRX_DTOG1 & st_rx);
value ^= (EPRX_DTOG2 & st_rx);
value |= EP_CTR_RX | EP_CTR_TX;
st103_set_epreg (ep_num, value);
}
static uint16_t st103_ep_get_rx_status (uint8_t ep_num)
{
uint16_t value = st103_get_epreg (ep_num);
return value & EPRX_STAT;
}
static void st103_ep_set_tx_status (uint8_t ep_num, uint16_t st_tx)
{
uint16_t value = st103_get_epreg (ep_num);
value &= (EPREG_MASK|EPTX_STAT);
value ^= (EPTX_DTOG1 & st_tx);
value ^= (EPTX_DTOG2 & st_tx);
value |= EP_CTR_RX | EP_CTR_TX;
st103_set_epreg (ep_num, value);
}
static uint16_t st103_ep_get_tx_status (uint8_t ep_num)
{
uint16_t value = st103_get_epreg (ep_num);
return value & EPTX_STAT;
}
static void st103_ep_clear_dtog_rx (uint8_t ep_num)
{
uint16_t value = st103_get_epreg (ep_num);
if ((value & EP_DTOG_RX))
{
value &= EPREG_MASK;
value |= EP_CTR_RX | EP_CTR_TX | EP_DTOG_RX;
st103_set_epreg (ep_num, value);
}
}
static void st103_ep_clear_dtog_tx (uint8_t ep_num)
{
uint16_t value = st103_get_epreg (ep_num);
if ((value & EP_DTOG_TX))
{
value &= EPREG_MASK;
value |= EP_CTR_RX | EP_CTR_TX | EP_DTOG_TX;
st103_set_epreg (ep_num, value);
}
}
void
usb_lld_ctrl_error (struct usb_dev *dev)
{
dev->state = STALLED;
st103_ep_set_rxtx_status (ENDP0, EP_RX_STALL, EP_TX_STALL);
}
int
usb_lld_ctrl_ack (struct usb_dev *dev)
{
dev->state = WAIT_STATUS_IN;
st103_set_tx_count (ENDP0, 0);
st103_ep_set_rxtx_status (ENDP0, EP_RX_NAK, EP_TX_VALID);
return USB_EVENT_OK;
}
void usb_lld_init (struct usb_dev *dev, uint8_t feature)
{
usb_lld_sys_init ();
dev->configuration = 0;
dev->feature = feature;
dev->state = WAIT_SETUP;
/* Reset USB */
st103_set_cntr (CNTR_FRES);
st103_set_cntr (0);
/* Clear Interrupt Status Register, and enable interrupt for USB */
st103_set_istr (0);
st103_set_btable ();
st103_set_cntr (CNTR_CTRM | CNTR_OVRM | CNTR_ERRM
| CNTR_WKUPM | CNTR_SUSPM | CNTR_RESETM);
#if 0
/*
* Since stop mode makes PLL, HSI & HES oscillators stop, USB clock is
* not supplied in stop mode. Thus, USB wakeup can't occur.
*
* So, only sleep mode can be supported with USB, which doesn't
* require use of EXTI.
*/
#include "mcu/stm32f103.h"
/* Setting of EXTI wakeup event to break stop mode. */
EXTI->EMR |= (1 << 18); /* Event mask cleared */
EXTI->RTSR |= (1 << 18); /* Rising trigger selection */
#endif
}
void usb_lld_prepare_shutdown (void)
{
st103_set_istr (0);
st103_set_cntr (0);
}
void usb_lld_shutdown (void)
{
st103_set_cntr (CNTR_PDWN);
usb_lld_sys_shutdown ();
}
#define USB_MAKE_EV(event) (event<<24)
#define USB_MAKE_TXRX(ep_num,txrx,len) ((txrx? (1<<23):0)|(ep_num<<16)|len)
int
usb_lld_event_handler (struct usb_dev *dev)
{
uint16_t istr_value = st103_get_istr ();
if ((istr_value & ISTR_RESET))
{
st103_set_istr (CLR_RESET);
return USB_MAKE_EV (USB_EVENT_DEVICE_RESET);
}
else if ((istr_value & ISTR_WKUP))
{
*CNTR &= ~CNTR_FSUSP;
st103_set_istr (CLR_WKUP);
return USB_MAKE_EV (USB_EVENT_DEVICE_WAKEUP);
}
else if ((istr_value & ISTR_SUSP))
{
*CNTR |= CNTR_FSUSP;
st103_set_istr (CLR_SUSP);
*CNTR |= CNTR_LPMODE;
return USB_MAKE_EV (USB_EVENT_DEVICE_SUSPEND);
}
else
{
if ((istr_value & ISTR_OVR))
st103_set_istr (CLR_OVR);
if ((istr_value & ISTR_ERR))
st103_set_istr (CLR_ERR);
if ((istr_value & ISTR_CTR))
return usb_handle_transfer (dev, istr_value);
}
return USB_EVENT_OK;
}
static void handle_datastage_out (struct usb_dev *dev)
{
if (dev->ctrl_data.addr && dev->ctrl_data.len)
{
uint32_t len = st103_get_rx_count (ENDP0);
if (len > dev->ctrl_data.len)
len = dev->ctrl_data.len;
usb_lld_from_pmabuf (dev->ctrl_data.addr, st103_get_rx_addr (ENDP0), len);
dev->ctrl_data.len -= len;
dev->ctrl_data.addr += len;
}
if (dev->ctrl_data.len == 0)
{
dev->state = WAIT_STATUS_IN;
st103_set_tx_count (ENDP0, 0);
st103_ep_set_tx_status (ENDP0, EP_TX_VALID);
}
else
{
dev->state = OUT_DATA;
st103_ep_set_rx_status (ENDP0, EP_RX_VALID);
}
}
static void handle_datastage_in (struct usb_dev *dev)
{
uint32_t len = USB_MAX_PACKET_SIZE;;
struct ctrl_data *data_p = &dev->ctrl_data;
if ((data_p->len == 0) && (dev->state == LAST_IN_DATA))
{
if (data_p->require_zlp)
{
data_p->require_zlp = 0;
/* No more data to send. Send empty packet */
st103_set_tx_count (ENDP0, 0);
st103_ep_set_tx_status (ENDP0, EP_TX_VALID);
}
else
{
/* No more data to send, proceed to receive OUT acknowledge. */
dev->state = WAIT_STATUS_OUT;
st103_ep_set_rx_status (ENDP0, EP_RX_VALID);
}
return;
}
dev->state = (data_p->len <= len) ? LAST_IN_DATA : IN_DATA;
if (len > data_p->len)
len = data_p->len;
usb_lld_to_pmabuf (data_p->addr, st103_get_tx_addr (ENDP0), len);
data_p->len -= len;
data_p->addr += len;
st103_set_tx_count (ENDP0, len);
st103_ep_set_tx_status (ENDP0, EP_TX_VALID);
}
typedef int (*HANDLER) (struct usb_dev *dev);
static int std_none (struct usb_dev *dev)
{
(void)dev;
return -1;
}
static int std_get_status (struct usb_dev *dev)
{
struct device_req *arg = &dev->dev_req;
uint8_t rcp = (arg->type & RECIPIENT);
uint16_t status_info = 0;
if (arg->value != 0 || arg->len != 2 || (arg->index >> 8) != 0
|| USB_SETUP_SET (arg->type))
return -1;
if (rcp == DEVICE_RECIPIENT)
{
if (arg->index == 0)
{
/* Get Device Status */
uint8_t feature = dev->feature;
/* Remote Wakeup enabled */
if ((feature & (1 << 5)))
status_info |= 2;
else
status_info &= ~2;
/* Bus-powered */
if ((feature & (1 << 6)))
status_info |= 1;
else /* Self-powered */
status_info &= ~1;
return usb_lld_ctrl_send (dev, &status_info, 2);
}
}
else if (rcp == INTERFACE_RECIPIENT)
{
if (dev->configuration == 0)
return -1;
return USB_EVENT_GET_STATUS_INTERFACE;
}
else if (rcp == ENDPOINT_RECIPIENT)
{
uint8_t endpoint = (arg->index & 0x0f);
uint16_t status;
if ((arg->index & 0x70) || endpoint == ENDP0)
return -1;
if ((arg->index & 0x80))
{
status = st103_ep_get_tx_status (endpoint);
if (status == 0) /* Disabled */
return -1;
else if (status == EP_TX_STALL)
status_info |= 1; /* IN Endpoint stalled */
}
else
{
status = st103_ep_get_rx_status (endpoint);
if (status == 0) /* Disabled */
return -1;
else if (status == EP_RX_STALL)
status_info |= 1; /* OUT Endpoint stalled */
}
return usb_lld_ctrl_send (dev, &status_info, 2);
}
return -1;
}
static int std_clear_feature (struct usb_dev *dev)
{
struct device_req *arg = &dev->dev_req;
uint8_t rcp = arg->type & RECIPIENT;
if (USB_SETUP_GET (arg->type))
return -1;
if (rcp == DEVICE_RECIPIENT)
{
if (arg->len != 0 || arg->index != 0)
return -1;
if (arg->value == FEATURE_DEVICE_REMOTE_WAKEUP)
{
dev->feature &= ~(1 << 5);
return USB_EVENT_CLEAR_FEATURE_DEVICE;
}
}
else if (rcp == ENDPOINT_RECIPIENT)
{
uint8_t endpoint = (arg->index & 0x0f);
uint16_t status;
if (dev->configuration == 0)
return -1;
if (arg->len != 0 || (arg->index >> 8) != 0
|| arg->value != FEATURE_ENDPOINT_HALT || endpoint == ENDP0)
return -1;
if ((arg->index & 0x80))
status = st103_ep_get_tx_status (endpoint);
else
status = st103_ep_get_rx_status (endpoint);
if (status == 0) /* It's disabled endpoint. */
return -1;
if (arg->index & 0x80) /* IN endpoint */
st103_ep_clear_dtog_tx (endpoint);
else /* OUT endpoint */
st103_ep_clear_dtog_rx (endpoint);
return USB_EVENT_CLEAR_FEATURE_ENDPOINT;
}
return -1;
}
static int std_set_feature (struct usb_dev *dev)
{
struct device_req *arg = &dev->dev_req;
uint8_t rcp = arg->type & RECIPIENT;
if (USB_SETUP_GET (arg->type))
return -1;
if (rcp == DEVICE_RECIPIENT)
{
if (arg->len != 0 || arg->index != 0)
return -1;
if (arg->value == FEATURE_DEVICE_REMOTE_WAKEUP)
{
dev->feature |= 1 << 5;
return USB_EVENT_SET_FEATURE_DEVICE;
}
}
else if (rcp == ENDPOINT_RECIPIENT)
{
uint8_t endpoint = (arg->index & 0x0f);
uint32_t status;
if (dev->configuration == 0)
return -1;
if (arg->len != 0 || (arg->index >> 8) != 0
|| arg->value != FEATURE_ENDPOINT_HALT || endpoint == ENDP0)
return -1;
if ((arg->index & 0x80))
status = st103_ep_get_tx_status (endpoint);
else
status = st103_ep_get_rx_status (endpoint);
if (status == 0) /* It's disabled endpoint. */
return -1;
if (arg->index & 0x80) /* IN endpoint */
st103_ep_set_tx_status (endpoint, EP_TX_STALL);
else /* OUT endpoint */
st103_ep_set_rx_status (endpoint, EP_RX_STALL);
return USB_EVENT_SET_FEATURE_ENDPOINT;
}
return -1;
}
static int std_set_address (struct usb_dev *dev)
{
struct device_req *arg = &dev->dev_req;
uint8_t rcp = arg->type & RECIPIENT;
if (USB_SETUP_GET (arg->type))
return -1;
if (rcp == DEVICE_RECIPIENT && arg->len == 0 && arg->value <= 127
&& arg->index == 0 && dev->configuration == 0)
return usb_lld_ctrl_ack (dev);
return -1;
}
static int std_get_descriptor (struct usb_dev *dev)
{
struct device_req *arg = &dev->dev_req;
if (USB_SETUP_SET (arg->type))
return -1;
return USB_EVENT_GET_DESCRIPTOR;
}
static int std_get_configuration (struct usb_dev *dev)
{
struct device_req *arg = &dev->dev_req;
uint8_t rcp = arg->type & RECIPIENT;
if (USB_SETUP_SET (arg->type))
return -1;
if (arg->value != 0 || arg->index != 0 || arg->len != 1)
return -1;
if (rcp == DEVICE_RECIPIENT)
return usb_lld_ctrl_send (dev, &dev->configuration, 1);
return -1;
}
static int std_set_configuration (struct usb_dev *dev)
{
struct device_req *arg = &dev->dev_req;
uint8_t rcp = arg->type & RECIPIENT;
if (USB_SETUP_GET (arg->type))
return -1;
if (arg->index != 0 || arg->len != 0)
return -1;
if (rcp == DEVICE_RECIPIENT)
return USB_EVENT_SET_CONFIGURATION;
return -1;
}
static int std_get_interface (struct usb_dev *dev)
{
struct device_req *arg = &dev->dev_req;
uint8_t rcp = arg->type & RECIPIENT;
if (USB_SETUP_SET (arg->type))
return -1;
if (arg->value != 0 || (arg->index >> 8) != 0 || arg->len != 1)
return -1;
if (dev->configuration == 0)
return -1;
if (rcp == INTERFACE_RECIPIENT)
return USB_EVENT_GET_INTERFACE;
return -1;
}
static int std_set_interface (struct usb_dev *dev)
{
struct device_req *arg = &dev->dev_req;
uint8_t rcp = arg->type & RECIPIENT;
if (USB_SETUP_GET (arg->type) || rcp != INTERFACE_RECIPIENT
|| arg->len != 0 || (arg->index >> 8) != 0
|| (arg->value >> 8) != 0 || dev->configuration == 0)
return -1;
return USB_EVENT_SET_INTERFACE;
}
static int handle_setup0 (struct usb_dev *dev)
{
const uint16_t *pw;
uint16_t w;
uint8_t req_no;
HANDLER handler;
pw = (uint16_t *)(PMA_ADDR + (uint8_t *)(st103_get_rx_addr (ENDP0) * 2));
w = *pw++;
dev->dev_req.type = (w & 0xff);
dev->dev_req.request = req_no = (w >> 8);
pw++;
dev->dev_req.value = *pw++;
pw++;
dev->dev_req.index = *pw++;
pw++;
dev->dev_req.len = *pw;
dev->ctrl_data.addr = NULL;
dev->ctrl_data.len = 0;
dev->ctrl_data.require_zlp = 0;
if ((dev->dev_req.type & REQUEST_TYPE) == STANDARD_REQUEST)
{
int r;
switch (req_no)
{
case 0: handler = std_get_status; break;
case 1: handler = std_clear_feature; break;
case 3: handler = std_set_feature; break;
case 5: handler = std_set_address; break;
case 6: handler = std_get_descriptor; break;
case 8: handler = std_get_configuration; break;
case 9: handler = std_set_configuration; break;
case 10: handler = std_get_interface; break;
case 11: handler = std_set_interface; break;
default: handler = std_none; break;
}
if ((r = (*handler) (dev)) < 0)
{
usb_lld_ctrl_error (dev);
return USB_EVENT_OK;
}
else
return r;
}
else
return USB_EVENT_CTRL_REQUEST;
}
static int handle_in0 (struct usb_dev *dev)
{
int r = 0;
if (dev->state == IN_DATA || dev->state == LAST_IN_DATA)
handle_datastage_in (dev);
else if (dev->state == WAIT_STATUS_IN)
{
dev->state = WAIT_SETUP;
if ((dev->dev_req.request == SET_ADDRESS) &&
((dev->dev_req.type & (REQUEST_TYPE | RECIPIENT))
== (STANDARD_REQUEST | DEVICE_RECIPIENT)))
{
st103_set_daddr (dev->dev_req.value);
r = USB_EVENT_DEVICE_ADDRESSED;
}
else
r = USB_EVENT_CTRL_WRITE_FINISH;
}
else
{
dev->state = STALLED;
st103_ep_set_rxtx_status (ENDP0, EP_RX_STALL, EP_TX_STALL);
}
return r;
}
static void handle_out0 (struct usb_dev *dev)
{
if (dev->state == OUT_DATA)
/* Usual case. */
handle_datastage_out (dev);
else if (dev->state == WAIT_STATUS_OUT)
/*
* Control READ transfer finished by ZLP.
* Leave ENDP0 status RX_NAK, TX_NAK.
*/
dev->state = WAIT_SETUP;
else
{
/*
* dev->state == IN_DATA || dev->state == LAST_IN_DATA
* (Host aborts the transfer before finish)
* Or else, unexpected state.
* STALL the endpoint, until we receive the next SETUP token.
*/
dev->state = STALLED;
st103_ep_set_rxtx_status (ENDP0, EP_RX_STALL, EP_TX_STALL);
}
}
static int
usb_handle_transfer (struct usb_dev *dev, uint16_t istr_value)
{
uint16_t ep_value = 0;
uint8_t ep_num = (istr_value & ISTR_EP_ID);
ep_value = st103_get_epreg (ep_num);
if (ep_num == 0)
{
if ((ep_value & EP_CTR_TX))
{
st103_ep_clear_ctr_tx (ep_num);
return USB_MAKE_EV (handle_in0 (dev));
}
if ((ep_value & EP_CTR_RX))
{
st103_ep_clear_ctr_rx (ep_num);
if ((ep_value & EP_SETUP))
return USB_MAKE_EV (handle_setup0 (dev));
else
{
handle_out0 (dev);
return USB_EVENT_OK;
}
}
}
else
{
uint16_t len;
if ((ep_value & EP_CTR_RX))
{
len = st103_get_rx_count (ep_num);
st103_ep_clear_ctr_rx (ep_num);
return USB_MAKE_TXRX (ep_num, 0, len);
}
if ((ep_value & EP_CTR_TX))
{
len = st103_get_tx_count (ep_num);
st103_ep_clear_ctr_tx (ep_num);
return USB_MAKE_TXRX (ep_num, 1, len);
}
}
return USB_EVENT_OK;
}
void usb_lld_reset (struct usb_dev *dev, uint8_t feature)
{
usb_lld_set_configuration (dev, 0);
dev->feature = feature;
st103_set_daddr (0);
}
void usb_lld_txcpy (const void *src,
int ep_num, int offset, size_t len)
{
usb_lld_to_pmabuf (src, st103_get_tx_addr (ep_num) + offset, len);
}
void usb_lld_write (uint8_t ep_num, const void *buf, size_t len)
{
usb_lld_to_pmabuf (buf, st103_get_tx_addr (ep_num), len);
st103_set_tx_count (ep_num, len);
st103_ep_set_tx_status (ep_num, EP_TX_VALID);
}
void usb_lld_rxcpy (uint8_t *dst,
int ep_num, int offset, size_t len)
{
usb_lld_from_pmabuf (dst, st103_get_rx_addr (ep_num) + offset, len);
}
void usb_lld_tx_enable (int ep_num, size_t len)
{
st103_set_tx_count (ep_num, len);
st103_ep_set_tx_status (ep_num, EP_TX_VALID);
}
void usb_lld_stall_tx (int ep_num)
{
st103_ep_set_tx_status (ep_num, EP_TX_STALL);
}
void usb_lld_stall_rx (int ep_num)
{
st103_ep_set_rx_status (ep_num, EP_RX_STALL);
}
void usb_lld_rx_enable (int ep_num)
{
st103_ep_set_rx_status (ep_num, EP_RX_VALID);
}
void usb_lld_setup_endpoint (int ep_num, int ep_type, int ep_kind,
int ep_rx_addr, int ep_tx_addr,
int ep_rx_buf_size)
{
uint16_t epreg_value = st103_get_epreg (ep_num);
uint16_t ep_rxtx_status = 0; /* Both disabled */
/* Clear: Write 1 if 1: EP_DTOG_RX, EP_DTOG_TX */
/* Set: Write: EP_T_FIELD, EP_KIND, EPADDR_FIELD */
/* Set: Toggle: EPRX_STAT, EPTX_STAT */
epreg_value &= (EPRX_STAT | EP_SETUP | EPTX_STAT | EP_DTOG_RX | EP_DTOG_TX);
#if USB_KEEP_CORRECT_TRANSFER_FLAGS
/* Keep: Write 1: EP_CTR_RX, EP_CTR_TX */
epreg_value |= (EP_CTR_RX|EP_CTR_TX);
#else
/* Clear: Write 0: EP_CTR_RX, EP_CTR_TX */
#endif
epreg_value |= ep_type;
epreg_value |= ep_kind;
epreg_value |= ep_num;
if (ep_rx_addr)
{
ep_rxtx_status |= EP_RX_NAK;
st103_set_rx_addr (ep_num, ep_rx_addr);
st103_set_rx_buf_size (ep_num, ep_rx_buf_size);
}
if (ep_tx_addr)
{
ep_rxtx_status |= EP_TX_NAK;
st103_set_tx_addr (ep_num, ep_tx_addr);
}
epreg_value ^= (EPRX_DTOG1 & ep_rxtx_status);
epreg_value ^= (EPRX_DTOG2 & ep_rxtx_status);
epreg_value ^= (EPTX_DTOG1 & ep_rxtx_status);
epreg_value ^= (EPTX_DTOG2 & ep_rxtx_status);
st103_set_epreg (ep_num, epreg_value);
}
void usb_lld_set_configuration (struct usb_dev *dev, uint8_t config)
{
dev->configuration = config;
}
uint8_t usb_lld_current_configuration (struct usb_dev *dev)
{
return dev->configuration;
}
int usb_lld_ctrl_recv (struct usb_dev *dev, void *p, size_t len)
{
struct ctrl_data *data_p = &dev->ctrl_data;
data_p->addr = p;
data_p->len = len;
dev->state = OUT_DATA;
st103_ep_set_rx_status (ENDP0, EP_RX_VALID);
return USB_EVENT_OK;
}
void usb_lld_to_pmabuf (const void *src, uint16_t addr, size_t n)
{
const uint8_t *s = (const uint8_t *)src;
uint16_t *p;
uint16_t w;
if (n == 0)
return;
if ((addr & 1))
{
p = (uint16_t *)(PMA_ADDR + (addr - 1) * 2);
w = *p;
w = (w & 0xff) | (*s++) << 8;
*p = w;
p += 2;
n--;
}
else
p = (uint16_t *)(PMA_ADDR + addr * 2);
while (n >= 2)
{
w = *s++;
w |= (*s++) << 8;
*p = w;
p += 2;
n -= 2;
}
if (n > 0)
{
w = *s;
*p = w;
}
}
void usb_lld_from_pmabuf (void *dst, uint16_t addr, size_t n)
{
uint8_t *d = (uint8_t *)dst;
uint16_t *p;
uint16_t w;
if (n == 0)
return;
if ((addr & 1))
{
p = (uint16_t *)(PMA_ADDR + (addr - 1) * 2);
w = *p;
*d++ = (w >> 8);
p += 2;
n--;
}
else
p = (uint16_t *)(PMA_ADDR + addr * 2);
while (n >= 2)
{
w = *p;
*d++ = (w & 0xff);
*d++ = (w >> 8);
p += 2;
n -= 2;
}
if (n > 0)
{
w = *p;
*d = (w & 0xff);
}
}
/*
* BUF: Pointer to data memory. Data memory should not be allocated
* on stack when BUFLEN > USB_MAX_PACKET_SIZE.
*
* BUFLEN: size of the data.
*/
int
usb_lld_ctrl_send (struct usb_dev *dev, const void *buf, size_t buflen)
{
struct ctrl_data *data_p = &dev->ctrl_data;
uint32_t len_asked = dev->dev_req.len;
uint32_t len;
data_p->addr = (void *)buf;
data_p->len = buflen;
/* Restrict the data length to be the one host asks for */
if (data_p->len >= len_asked)
data_p->len = len_asked;
/* ZLP is only required when host doesn't expect the end of packets. */
else if (data_p->len != 0 && (data_p->len % USB_MAX_PACKET_SIZE) == 0)
data_p->require_zlp = 1;
if (data_p->len < USB_MAX_PACKET_SIZE)
{
len = data_p->len;
dev->state = LAST_IN_DATA;
}
else
{
len = USB_MAX_PACKET_SIZE;
dev->state = IN_DATA;
}
if (len)
{
usb_lld_to_pmabuf (data_p->addr, st103_get_tx_addr (ENDP0), len);
data_p->len -= len;
data_p->addr += len;
}
st103_set_tx_count (ENDP0, len);
st103_ep_set_rxtx_status (ENDP0, EP_RX_NAK, EP_TX_VALID);
return USB_EVENT_OK;
}