QortalOS Brooklyn for Raspberry Pi 4
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

995 lines
24 KiB

/*
* usb-mkl27z.c - USB driver for MKL27Z
*
* Copyright (C) 2016, 2018 Flying Stone Technology
* Author: NIIBE Yutaka <[email protected]>
*
* This file is a part of Chopstx, a thread library for embedded.
*
* Chopstx is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Chopstx is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* As additional permission under GNU GPL version 3 section 7, you may
* distribute non-source form of the Program without the copy of the
* GNU GPL normally required by section 4, provided you inform the
* receipents of GNU GPL by a written offer.
*
*/
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include "usb_lld.h"
#define DATA0 0
#define DATA1 1
struct endpoint_ctl {
uint32_t rx_odd: 1;
uint32_t tx_odd: 1;
};
static struct endpoint_ctl ep[16];
#if 0
struct USB_CONF {
const uint8_t PERID; /* Peripheral ID register */
uint8_t rsvd0[3]; /* */
const uint8_t IDCOMP; /* Peripheral ID Complement register */
uint8_t rsvd1[3]; /* */
const uint8_t REV; /* Peripheral Revision register */
uint8_t rsvd2[3]; /* */
volatile uint8_t ADDINFO; /* Peripheral Additional Info register */
};
static struct USB_CONF *const USB_CONF = (struct USB_CONF *)0x40072000;
#endif
struct USB_CTRL0 {
volatile uint8_t OTGCTL; /* OTG Control register */
};
static struct USB_CTRL0 *const USB_CTRL0 = (struct USB_CTRL0 *)0x4007201c;
struct USB_CTRL1 {
volatile uint8_t ISTAT; /* Interrupt Status register */
uint8_t rsvd5[3]; /* */
volatile uint8_t INTEN; /* Interrupt Enable register */
uint8_t rsvd6[3]; /* */
volatile uint8_t ERRSTAT; /* Error Interrupt Status register */
uint8_t rsvd7[3]; /* */
volatile uint8_t ERREN; /* Error Interrupt Enable register */
uint8_t rsvd8[3]; /* */
volatile uint8_t STAT; /* Status register */
uint8_t rsvd9[3]; /* */
volatile uint8_t CTL; /* Control register */
uint8_t rsvd10[3]; /* */
volatile uint8_t ADDR; /* Address register */
uint8_t rsvd11[3]; /* */
volatile uint8_t BDTPAGE1; /* BDT Page register 1 */
uint8_t rsvd12[3]; /* */
volatile uint8_t FRMNUML; /* Frame Number register Low */
uint8_t rsvd13[3]; /* */
volatile uint8_t FRMNUMH; /* Frame Number register High */
uint8_t rsvd14[11]; /* */
volatile uint8_t BDTPAGE2; /* BDT Page Register 2 */
uint8_t rsvd15[3]; /* */
volatile uint8_t BDTPAGE3; /* BDT Page Register 3 */
};
static struct USB_CTRL1 *const USB_CTRL1 = (struct USB_CTRL1 *)0x40072080;
/* Interrupt source bits */
#define USB_IS_STALL (1 << 7)
#define USB_IS_RESUME (1 << 5)
#define USB_IS_SLEEP (1 << 4)
#define USB_IS_TOKDNE (1 << 3)
#define USB_IS_SOFTOK (1 << 2)
#define USB_IS_ERROR (1 << 1)
#define USB_IS_USBRST (1 << 0)
struct USB_ENDPT {
volatile uint8_t EP; /* Endpoint Control register */
uint8_t rsvd17[3];
};
static struct USB_ENDPT *const USB_ENDPT = (struct USB_ENDPT *)0x400720c0;
struct USB_CTRL2 {
volatile uint8_t USBCTRL; /* USB Control register */
uint8_t rsvd33[3]; /* */
volatile uint8_t OBSERVE; /* USB OTG Observe register */
uint8_t rsvd34[3]; /* */
volatile uint8_t CONTROL; /* USB OTG Control register */
uint8_t rsvd35[3]; /* */
volatile uint8_t USBTRC0; /* USB Transceiver Control register 0 */
uint8_t rsvd36[7]; /* */
volatile uint8_t USBFRMADJUST; /* Frame Adjut Register */
};
static struct USB_CTRL2 *const USB_CTRL2 = (struct USB_CTRL2 *)0x40072100;
/* Buffer Descriptor */
struct BD {
volatile uint32_t ctrl;
volatile void *buf;
};
/*
uint32_t rsvd0 : 2;
volatile uint32_t STALL: 1;
volatile uint32_t DTS: 1;
volatile uint32_t NINC: 1;
volatile uint32_t KEEP: 1;
volatile uint32_t DATA01: 1;
volatile uint32_t OWN: 1;
uint32_t rsvd1: 8;
volatile uint32_t BC: 10;
uint32_t rsvd2: 6;
*/
#define TOK_PID(ctrl) ((ctrl >> 2) & 0x0f)
extern uint8_t __usb_bdt__;
static struct BD *const BD_table = (struct BD *)&__usb_bdt__;
static void
kl27z_usb_init (void)
{
int i;
memset (ep, 0, sizeof (ep));
memset (BD_table, 0, 16 * 2 * 2 * sizeof (struct BD));
/* D+ pull up */
USB_CTRL0->OTGCTL = 0x80;
USB_CTRL1->ERREN = 0xff;
USB_CTRL1->BDTPAGE1 = ((uint32_t)BD_table) >> 8;
USB_CTRL1->BDTPAGE2 = ((uint32_t)BD_table) >> 16;
USB_CTRL1->BDTPAGE3 = ((uint32_t)BD_table) >> 24;
/* Not suspended, Pull-down disabled. */
USB_CTRL2->USBCTRL = 0x00;
/* DP Pullup in non-OTG device mode. */
USB_CTRL2->CONTROL = 0x10;
/* Disable all endpoints. */
for (i = 0; i < 16; i++)
USB_ENDPT[i].EP = 0;
/*
* Enable USB FS communication module, clearing all ODD-bits
* for BDT.
*/
USB_CTRL1->CTL = 0x03;
/* ??? How we can ask re-enumeration? Is only hard RESET enough? */
}
static void
kl27z_set_daddr (uint8_t daddr)
{
USB_CTRL1->ADDR = daddr;
}
static void
kl27z_prepare_ep0_setup (struct usb_dev *dev)
{
/* Endpoint 0, TX=0. */
BD_table[ep[0].rx_odd].ctrl = 0x00080088; /* Len=8, OWN=1, DATA01=0, DTS=1 */
BD_table[ep[0].rx_odd].buf = &dev->dev_req;
BD_table[!ep[0].rx_odd].ctrl = 0x0000; /* OWN=0 */
BD_table[!ep[0].rx_odd].buf = NULL;
}
static void
kl27z_prepare_ep0_in (const void *buf, uint8_t len, int data01)
{
/* Endpoint 0, TX=1 *//* OWN=1, DTS=1 */
BD_table[2+ep[0].tx_odd].ctrl = (len << 16) | 0x0088 | (data01 << 6);
BD_table[2+ep[0].tx_odd].buf = (void *)buf;
}
static void
kl27z_prepare_ep0_out (void *buf, uint8_t len, int data01)
{
/* Endpoint 0, TX=0 *//* OWN=1, DTS=1 */
BD_table[ep[0].rx_odd].ctrl = (len << 16) | 0x0088 | (data01 << 6);
BD_table[ep[0].rx_odd].buf = buf;
}
static int
kl27z_ep_is_disabled (uint8_t n)
{
return (USB_ENDPT[n].EP == 0);
}
static int
kl27z_ep_is_stall (uint8_t n)
{
return (USB_ENDPT[n].EP & 0x02) >> 1;
}
static void
kl27z_ep_stall (uint8_t n)
{
USB_ENDPT[n].EP |= 0x02;
}
static void
kl27z_ep_clear_stall (uint8_t n)
{
USB_ENDPT[n].EP &= ~0x02;
}
static void
kl27z_ep_clear_dtog (int rx, uint8_t n)
{
uint32_t config;
if (!kl27z_ep_is_stall (n))
/* Just in case, when the endpoint is active */
kl27z_ep_stall (n);
if (rx)
{
config = BD_table[4*n+ep[n].rx_odd].ctrl;
BD_table[4*n+!ep[n].rx_odd].ctrl &= ~(1 << 6);
if ((config & 0x0080)) /* OWN already? */
{
/*
* How to update BDT entry which is owned by USBFS seems to
* be not clearly documented. It would be just OK to update
* it as long as the endpoint is stalled (BDT entry is
* actually not in use). We write 0 at first and then write
* value with OWN, to avoid possible failure.
*/
BD_table[4*n+ep[n].rx_odd].ctrl = 0;
BD_table[4*n+ep[n].rx_odd].ctrl = (config & ~(1 << 6));
}
}
else
{
config = BD_table[4*n+2+ep[n].tx_odd].ctrl;
BD_table[4*n+2+!ep[n].tx_odd].ctrl &= ~(1 << 6);
if ((config & 0x0080)) /* OWN already? */
{
BD_table[4*n+2+ep[n].tx_odd].ctrl = 0;
BD_table[4*n+2+ep[n].tx_odd].ctrl = (config & ~(1 << 6));
}
}
kl27z_ep_clear_stall (n);
}
#include "usb_lld_driver.h"
static int handle_transaction (struct usb_dev *dev, uint8_t stat);
void
usb_lld_stall (int n)
{
kl27z_ep_stall (n);
}
void
usb_lld_ctrl_error (struct usb_dev *dev)
{
dev->state = STALLED;
kl27z_ep_stall (ENDP0);
}
int
usb_lld_ctrl_ack (struct usb_dev *dev)
{
/* Zero length packet for ACK. */
dev->state = WAIT_STATUS_IN;
kl27z_prepare_ep0_in (&dev->dev_req, 0, DATA1);
return USB_EVENT_OK;
}
void
usb_lld_init (struct usb_dev *dev, uint8_t feature)
{
usb_lld_set_configuration (dev, 0);
dev->feature = feature;
dev->state = WAIT_SETUP;
kl27z_set_daddr (0);
kl27z_usb_init ();
/* Enable the endpoint 0. */
USB_ENDPT[0].EP = 0x0d;
/* Clear Interrupt Status Register, and enable interrupt for USB */
USB_CTRL1->ISTAT = 0xff; /* All clear */
USB_CTRL1->INTEN = USB_IS_STALL | USB_IS_TOKDNE
| USB_IS_ERROR | USB_IS_USBRST;
}
#define USB_MAKE_EV(event) (event<<24)
#define USB_MAKE_TXRX(ep_num,txrx,len) ((txrx? (1<<23):0)|(ep_num<<16)|len)
int
usb_lld_event_handler (struct usb_dev *dev)
{
uint8_t istat_value = USB_CTRL1->ISTAT;
uint8_t stat = USB_CTRL1->STAT;
if ((istat_value & USB_IS_USBRST))
{
USB_CTRL1->ISTAT = USB_IS_USBRST;
return USB_MAKE_EV (USB_EVENT_DEVICE_RESET);
}
else if ((istat_value & USB_IS_TOKDNE))
return handle_transaction (dev, stat);
else if ((istat_value & USB_IS_ERROR))
{ /* Clear Errors. */
USB_CTRL1->ERRSTAT = USB_CTRL1->ERRSTAT;
USB_CTRL1->ISTAT = USB_IS_ERROR;
}
else if ((istat_value & USB_IS_STALL))
{
/* Does STAT have ENDPOINT info in this case?: No, it doesn't. */
if (kl27z_ep_is_stall (0))
{ /* It's endpoint 0, recover from erorr. */
dev->state = WAIT_SETUP;
kl27z_ep_clear_stall (0);
kl27z_prepare_ep0_setup (dev);
}
USB_CTRL1->ISTAT = USB_IS_STALL;
}
return USB_EVENT_OK;
}
static void
handle_datastage_out (struct usb_dev *dev, uint8_t stat)
{
struct ctrl_data *data_p = &dev->ctrl_data;
int odd = (stat >> 2)&1;
int data01 = !((BD_table[odd].ctrl >> 6)&1);
uint32_t len = (BD_table[odd].ctrl >> 16)&0x3ff;
data_p->len -= len;
data_p->addr += len;
len = data_p->len;
if (len > USB_MAX_PACKET_SIZE)
len = USB_MAX_PACKET_SIZE;
if (data_p->len == 0)
{
/* No more data to receive, proceed to send acknowledge for IN. */
dev->state = WAIT_STATUS_IN;
kl27z_prepare_ep0_in (&dev->dev_req, 0, DATA1);
}
else
{
dev->state = OUT_DATA;
kl27z_prepare_ep0_out (data_p->addr, len, data01);
}
}
static void
handle_datastage_in (struct usb_dev *dev, uint8_t stat)
{
struct ctrl_data *data_p = &dev->ctrl_data;
int odd = (stat >> 2)&1;
int data01 = !((BD_table[2+odd].ctrl >> 6)&1);
uint32_t len = USB_MAX_PACKET_SIZE;
if ((data_p->len == 0) && (dev->state == LAST_IN_DATA))
{
if (data_p->require_zlp)
{
data_p->require_zlp = 0;
/* No more data to send. Send empty packet */
kl27z_prepare_ep0_in (&dev->dev_req, 0, data01);
}
else
{
/* No more data to send, proceed to receive OUT acknowledge. */
dev->state = WAIT_STATUS_OUT;
kl27z_prepare_ep0_out (&dev->dev_req, 0, DATA1);
}
return;
}
dev->state = (data_p->len <= len) ? LAST_IN_DATA : IN_DATA;
if (len > data_p->len)
len = data_p->len;
kl27z_prepare_ep0_in (data_p->addr, len, data01);
data_p->len -= len;
data_p->addr += len;
}
typedef int (*HANDLER) (struct usb_dev *dev);
static int
std_none (struct usb_dev *dev)
{
(void)dev;
return -1;
}
static uint16_t status_info;
static int
std_get_status (struct usb_dev *dev)
{
struct device_req *arg = &dev->dev_req;
uint8_t rcp = arg->type & RECIPIENT;
if (arg->value != 0 || arg->len != 2 || (arg->index >> 8) != 0
|| USB_SETUP_SET (arg->type))
return -1;
if (rcp == DEVICE_RECIPIENT)
{
if (arg->index == 0)
{
/* Get Device Status */
uint8_t feature = dev->feature;
/* Remote Wakeup enabled */
if ((feature & (1 << 5)))
status_info |= 2;
else
status_info &= ~2;
/* Bus-powered */
if ((feature & (1 << 6)))
status_info |= 1;
else /* Self-powered */
status_info &= ~1;
return usb_lld_ctrl_send (dev, &status_info, 2);
}
}
else if (rcp == INTERFACE_RECIPIENT)
{
if (dev->configuration == 0)
return -1;
return USB_EVENT_GET_STATUS_INTERFACE;
}
else if (rcp == ENDPOINT_RECIPIENT)
{
uint8_t n = (arg->index & 0x0f);
if ((arg->index & 0x70) || n == ENDP0)
return -1;
if (kl27z_ep_is_disabled (n))
return -1;
status_info = kl27z_ep_is_stall (n);
return usb_lld_ctrl_send (dev, &status_info, 2);
}
return -1;
}
static int
std_clear_feature (struct usb_dev *dev)
{
struct device_req *arg = &dev->dev_req;
uint8_t rcp = arg->type & RECIPIENT;
if (USB_SETUP_GET (arg->type))
return -1;
if (rcp == DEVICE_RECIPIENT)
{
if (arg->len != 0 || arg->index != 0)
return -1;
if (arg->value == FEATURE_DEVICE_REMOTE_WAKEUP)
{
dev->feature &= ~(1 << 5);
return USB_EVENT_CLEAR_FEATURE_DEVICE;
}
}
else if (rcp == ENDPOINT_RECIPIENT)
{
uint8_t n = (arg->index & 0x0f);
if (dev->configuration == 0)
return -1;
if (arg->len != 0 || (arg->index >> 8) != 0
|| arg->value != FEATURE_ENDPOINT_HALT || n == ENDP0)
return -1;
if (kl27z_ep_is_disabled (n))
return -1;
kl27z_ep_clear_dtog ((arg->index & 0x80) == 0, n);
return USB_EVENT_CLEAR_FEATURE_ENDPOINT;
}
return -1;
}
static int
std_set_feature (struct usb_dev *dev)
{
struct device_req *arg = &dev->dev_req;
uint8_t rcp = arg->type & RECIPIENT;
if (USB_SETUP_GET (arg->type))
return -1;
if (rcp == DEVICE_RECIPIENT)
{
if (arg->len != 0 || arg->index != 0)
return -1;
if (arg->value == FEATURE_DEVICE_REMOTE_WAKEUP)
{
dev->feature |= 1 << 5;
return USB_EVENT_SET_FEATURE_DEVICE;
}
}
else if (rcp == ENDPOINT_RECIPIENT)
{
uint8_t n = (arg->index & 0x0f);
if (dev->configuration == 0)
return -1;
if (arg->len != 0 || (arg->index >> 8) != 0
|| arg->value != FEATURE_ENDPOINT_HALT || n == ENDP0)
return -1;
if (kl27z_ep_is_disabled (n))
return -1;
kl27z_ep_stall (n);
return USB_EVENT_SET_FEATURE_ENDPOINT;
}
return -1;
}
static int
std_set_address (struct usb_dev *dev)
{
struct device_req *arg = &dev->dev_req;
uint8_t rcp = arg->type & RECIPIENT;
if (USB_SETUP_GET (arg->type))
return -1;
if (rcp == DEVICE_RECIPIENT && arg->len == 0 && arg->value <= 127
&& arg->index == 0 && dev->configuration == 0)
return usb_lld_ctrl_ack (dev);
return -1;
}
static int
std_get_descriptor (struct usb_dev *dev)
{
struct device_req *arg = &dev->dev_req;
if (USB_SETUP_SET (arg->type))
return -1;
return USB_EVENT_GET_DESCRIPTOR;
}
static int
std_get_configuration (struct usb_dev *dev)
{
struct device_req *arg = &dev->dev_req;
uint8_t rcp = arg->type & RECIPIENT;
if (USB_SETUP_SET (arg->type))
return -1;
if (arg->value != 0 || arg->index != 0 || arg->len != 1)
return -1;
if (rcp == DEVICE_RECIPIENT)
return usb_lld_ctrl_send (dev, &dev->configuration, 1);
return -1;
}
static int
std_set_configuration (struct usb_dev *dev)
{
struct device_req *arg = &dev->dev_req;
uint8_t rcp = arg->type & RECIPIENT;
if (USB_SETUP_GET (arg->type))
return -1;
if (rcp == DEVICE_RECIPIENT && arg->index == 0 && arg->len == 0)
return USB_EVENT_SET_CONFIGURATION;
return -1;
}
static int
std_get_interface (struct usb_dev *dev)
{
struct device_req *arg = &dev->dev_req;
uint8_t rcp = arg->type & RECIPIENT;
if (USB_SETUP_SET (arg->type))
return -1;
if (arg->value != 0 || (arg->index >> 8) != 0 || arg->len != 1)
return -1;
if (dev->configuration == 0)
return -1;
if (rcp == INTERFACE_RECIPIENT)
return USB_EVENT_GET_INTERFACE;
return -1;
}
static int
std_set_interface (struct usb_dev *dev)
{
struct device_req *arg = &dev->dev_req;
uint8_t rcp = arg->type & RECIPIENT;
if (USB_SETUP_GET (arg->type) || rcp != INTERFACE_RECIPIENT
|| arg->len != 0 || (arg->index >> 8) != 0
|| (arg->value >> 8) != 0 || dev->configuration == 0)
return -1;
return USB_EVENT_SET_INTERFACE;
}
static int
handle_setup0 (struct usb_dev *dev)
{
struct ctrl_data *data_p = &dev->ctrl_data;
int r = -1;
HANDLER handler;
data_p->addr = NULL;
data_p->len = 0;
data_p->require_zlp = 0;
if ((dev->dev_req.type & REQUEST_TYPE) == STANDARD_REQUEST)
{
switch (dev->dev_req.request)
{
case 0: handler = std_get_status; break;
case 1: handler = std_clear_feature; break;
case 3: handler = std_set_feature; break;
case 5: handler = std_set_address; break;
case 6: handler = std_get_descriptor; break;
case 8: handler = std_get_configuration; break;
case 9: handler = std_set_configuration; break;
case 10: handler = std_get_interface; break;
case 11: handler = std_set_interface; break;
default: handler = std_none; break;
}
if ((r = (*handler) (dev)) < 0)
{
usb_lld_ctrl_error (dev);
return USB_EVENT_OK;
}
else
return r;
}
else
return USB_EVENT_CTRL_REQUEST;
}
static int
handle_in0 (struct usb_dev *dev, uint8_t stat)
{
int r = 0;
if (dev->state == IN_DATA || dev->state == LAST_IN_DATA)
handle_datastage_in (dev, stat);
else if (dev->state == WAIT_STATUS_IN)
{ /* Control WRITE transfer done successfully. */
uint16_t value = dev->dev_req.value;
if ((dev->dev_req.request == SET_ADDRESS) &&
((dev->dev_req.type & (REQUEST_TYPE | RECIPIENT))
== (STANDARD_REQUEST | DEVICE_RECIPIENT)))
{
kl27z_set_daddr (value);
ep[0].rx_odd = 0;
r = USB_EVENT_DEVICE_ADDRESSED;
}
else
r = USB_EVENT_CTRL_WRITE_FINISH;
dev->state = WAIT_SETUP;
kl27z_prepare_ep0_setup (dev);
}
else
{
dev->state = STALLED;
kl27z_ep_stall (ENDP0);
}
return r;
}
static void
handle_out0 (struct usb_dev *dev, uint8_t stat)
{
if (dev->state == OUT_DATA)
/* It's normal control WRITE transfer. */
handle_datastage_out (dev, stat);
else if (dev->state == WAIT_STATUS_OUT)
{ /* Control READ transfer done successfully. */
dev->state = WAIT_SETUP;
kl27z_prepare_ep0_setup (dev);
}
else
{
/*
* dev->state == IN_DATA || dev->state == LAST_IN_DATA
* (Host aborts the transfer before finish)
* Or else, unexpected state.
* STALL the endpoint, until we receive the next SETUP token.
*/
dev->state = STALLED;
kl27z_ep_stall (ENDP0);
}
}
#define USB_TOKEN_ACK 0x02
#define USB_TOKEN_IN 0x09
#define USB_TOKEN_SETUP 0x0d
static int
handle_transaction (struct usb_dev *dev, uint8_t stat)
{
int odd = (stat >> 2)&1;
uint8_t ep_num = (stat >> 4);
int r;
if (ep_num == 0)
{
if ((stat & 0x08) == 0)
{
ep[0].rx_odd ^= 1;
if (TOK_PID (BD_table[odd].ctrl) == USB_TOKEN_SETUP)
{
r = handle_setup0 (dev);
USB_CTRL1->ISTAT = USB_IS_TOKDNE;
USB_CTRL1->CTL = 0x01; /* Clear TXSUSPENDTOKENBUSY. */
return USB_MAKE_EV (r);
}
else
{
handle_out0 (dev, stat);
USB_CTRL1->ISTAT = USB_IS_TOKDNE;
return USB_EVENT_OK;
}
}
else
{
ep[0].tx_odd ^= 1;
r = handle_in0 (dev, stat);
USB_CTRL1->ISTAT = USB_IS_TOKDNE;
return USB_MAKE_EV (r);
}
}
else
{
uint16_t len;
if ((stat & 0x08) == 0)
{
len = (BD_table[4*ep_num+odd].ctrl >> 16)&0x3ff;
ep[ep_num].rx_odd ^= 1;
USB_CTRL1->ISTAT = USB_IS_TOKDNE;
return USB_MAKE_TXRX (ep_num, 0, len);
}
else
{
/*
* IN transaction is usually in a sequence like:
*
* -----time------>
* host: IN ACK
* device: DATA0/1
*
* Although it is not described in the specification (it's
* ambiguous), it is actually possible for some host
* implementation to send back a NAK on erroneous case like
* a device sent oversized data.
*
* -----time------>
* host: IN NAK
* device: DATA0/1
*
* We do our best to distinguish successful tx and tx with
* failure.
*
*/
uint32_t dmaerr = (USB_CTRL1->ERRSTAT & (1 << 5));
int success = (dmaerr == 0);
len = (BD_table[4*ep_num+2+odd].ctrl >> 16)&0x3ff;
if (!success)
USB_CTRL1->ERRSTAT = dmaerr; /* Clear error. */
ep[ep_num].tx_odd ^= 1;
USB_CTRL1->ISTAT = USB_IS_TOKDNE;
return USB_MAKE_TXRX (ep_num, 1, len);
}
}
}
void
usb_lld_reset (struct usb_dev *dev, uint8_t feature)
{
usb_lld_set_configuration (dev, 0);
dev->feature = feature;
dev->state = WAIT_SETUP;
/* Reset USB */
USB_CTRL2->USBTRC0 = 0xc0;
USB_CTRL1->CTL = 0x00; /* Disable USB FS communication module */
kl27z_set_daddr (0);
kl27z_usb_init ();
/* Clear Interrupt Status Register, and enable interrupt for USB */
USB_CTRL1->ISTAT = 0xff; /* All clear */
USB_CTRL1->INTEN = USB_IS_STALL | USB_IS_TOKDNE
| USB_IS_ERROR | USB_IS_USBRST;
}
void
usb_lld_setup_endp (struct usb_dev *dev, int n, int rx_en, int tx_en)
{
if (n == 0)
{
/* Enable the endpoint 0. */
USB_ENDPT[0].EP = 0x0d;
kl27z_prepare_ep0_setup (dev);
}
else
{
/* Enable the endpoint. */
USB_ENDPT[n].EP = (rx_en << 3)|(tx_en << 2)|0x11;
/* Configure BDT entry so that it starts with DATA0. */
/* RX */
BD_table[4*n+ep[n].rx_odd].ctrl = 0x0000;
BD_table[4*n+ep[n].rx_odd].buf = NULL;
BD_table[4*n+!ep[n].rx_odd].ctrl = 0x0040;
BD_table[4*n+!ep[n].rx_odd].buf = NULL;
/* TX */
BD_table[4*n+2+ep[n].tx_odd].ctrl = 0x0000;
BD_table[4*n+2+ep[n].tx_odd].buf = NULL;
BD_table[4*n+2+!ep[n].tx_odd].ctrl = 0x0040;
BD_table[4*n+2+!ep[n].tx_odd].buf = NULL;
}
}
void
usb_lld_set_configuration (struct usb_dev *dev, uint8_t config)
{
dev->configuration = config;
}
uint8_t
usb_lld_current_configuration (struct usb_dev *dev)
{
return dev->configuration;
}
int
usb_lld_ctrl_recv (struct usb_dev *dev, void *p, size_t len)
{
struct ctrl_data *data_p = &dev->ctrl_data;
data_p->addr = (uint8_t *)p;
data_p->len = len;
if (len > USB_MAX_PACKET_SIZE)
len = USB_MAX_PACKET_SIZE;
kl27z_prepare_ep0_out (p, len, DATA1);
dev->state = OUT_DATA;
return USB_EVENT_OK;
}
/*
* BUF: Pointer to data memory. Data memory should not be allocated
* on stack when BUFLEN > USB_MAX_PACKET_SIZE.
*
* BUFLEN: size of the data.
*/
int
usb_lld_ctrl_send (struct usb_dev *dev, const void *buf, size_t buflen)
{
struct ctrl_data *data_p = &dev->ctrl_data;
uint32_t len_asked = dev->dev_req.len;
uint32_t len;
data_p->addr = (void *)buf;
data_p->len = buflen;
/* Restrict the data length to be the one host asks for */
if (data_p->len >= len_asked)
data_p->len = len_asked;
/* ZLP is only required when host doesn't expect the end of packets. */
else if (data_p->len != 0 && (data_p->len % USB_MAX_PACKET_SIZE) == 0)
data_p->require_zlp = 1;
if (data_p->len < USB_MAX_PACKET_SIZE)
{
len = data_p->len;
dev->state = LAST_IN_DATA;
}
else
{
len = USB_MAX_PACKET_SIZE;
dev->state = IN_DATA;
}
kl27z_prepare_ep0_in (data_p->addr, len, DATA1);
data_p->len -= len;
data_p->addr += len;
return USB_EVENT_OK;
}
void
usb_lld_rx_enable_buf (int n, void *buf, size_t len)
{
int data01 = !((BD_table[4*n+!ep[n].rx_odd].ctrl >> 6)&1);
BD_table[4*n+ep[n].rx_odd].ctrl = (len << 16) | 0x0088 | (data01 << 6);
BD_table[4*n+ep[n].rx_odd].buf = buf;
}
void
usb_lld_tx_enable_buf (int n, const void *buf, size_t len)
{
int data01 = !((BD_table[4*n+2+!ep[n].tx_odd].ctrl >> 6)&1);
BD_table[4*n+2+ep[n].tx_odd].ctrl = (len << 16) | 0x0088 | (data01 << 6);
BD_table[4*n+2+ep[n].tx_odd].buf = (void *)buf;
}