3
0
mirror of https://github.com/Qortal/Brooklyn.git synced 2025-02-21 06:35:53 +00:00
Brooklyn/drivers/w1/slaves/w1_therm.c
Raziel K. Crowe 04c1822c0a There is a moose on the mool buff
Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey!
2022-03-15 21:13:23 +05:00

2159 lines
55 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* w1_therm.c
*
* Copyright (c) 2004 Evgeniy Polyakov <zbr@ioremap.net>
*/
#include <asm/types.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/sched.h>
#include <linux/device.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/hwmon.h>
#include <linux/string.h>
#include <linux/jiffies.h>
#include <linux/w1.h>
#define W1_THERM_DS18S20 0x10
#define W1_THERM_DS1822 0x22
#define W1_THERM_DS18B20 0x28
#define W1_THERM_DS1825 0x3B
#define W1_THERM_DS28EA00 0x42
/*
* Allow the strong pullup to be disabled, but default to enabled.
* If it was disabled a parasite powered device might not get the require
* current to do a temperature conversion. If it is enabled parasite powered
* devices have a better chance of getting the current required.
* In case the parasite power-detection is not working (seems to be the case
* for some DS18S20) the strong pullup can also be forced, regardless of the
* power state of the devices.
*
* Summary of options:
* - strong_pullup = 0 Disable strong pullup completely
* - strong_pullup = 1 Enable automatic strong pullup detection
* - strong_pullup = 2 Force strong pullup
*/
static int w1_strong_pullup = 1;
module_param_named(strong_pullup, w1_strong_pullup, int, 0);
/* Counter for devices supporting bulk reading */
static u16 bulk_read_device_counter; /* =0 as per C standard */
/* This command should be in public header w1.h but is not */
#define W1_RECALL_EEPROM 0xB8
/* Nb of try for an operation */
#define W1_THERM_MAX_TRY 5
/* ms delay to retry bus mutex */
#define W1_THERM_RETRY_DELAY 20
/* delay in ms to write in EEPROM */
#define W1_THERM_EEPROM_WRITE_DELAY 10
#define EEPROM_CMD_WRITE "save" /* cmd for write eeprom sysfs */
#define EEPROM_CMD_READ "restore" /* cmd for read eeprom sysfs */
#define BULK_TRIGGER_CMD "trigger" /* cmd to trigger a bulk read */
#define MIN_TEMP -55 /* min temperature that can be measured */
#define MAX_TEMP 125 /* max temperature that can be measured */
/* Allowed values for sysfs conv_time attribute */
#define CONV_TIME_DEFAULT 0
#define CONV_TIME_MEASURE 1
/* Bits in sysfs "features" value */
#define W1_THERM_CHECK_RESULT 1 /* Enable conversion success check */
#define W1_THERM_POLL_COMPLETION 2 /* Poll for conversion completion */
#define W1_THERM_FEATURES_MASK 3 /* All values mask */
/* Poll period in milliseconds. Should be less then a shortest operation on the device */
#define W1_POLL_PERIOD 32
#define W1_POLL_CONVERT_TEMP 2000 /* Timeout for W1_CONVERT_TEMP, ms */
#define W1_POLL_RECALL_EEPROM 500 /* Timeout for W1_RECALL_EEPROM, ms*/
/* Masks for resolution functions, work with all devices */
/* Bit mask for config register for all devices, bits 7,6,5 */
#define W1_THERM_RESOLUTION_MASK 0xE0
/* Bit offset of resolution in config register for all devices */
#define W1_THERM_RESOLUTION_SHIFT 5
/* Bit offset of resolution in config register for all devices */
#define W1_THERM_RESOLUTION_SHIFT 5
/* Add this to bit value to get resolution */
#define W1_THERM_RESOLUTION_MIN 9
/* Maximum allowed value */
#define W1_THERM_RESOLUTION_MAX 14
/* Helpers Macros */
/*
* return a pointer on the slave w1_therm_family_converter struct:
* always test family data existence before using this macro
*/
#define SLAVE_SPECIFIC_FUNC(sl) \
(((struct w1_therm_family_data *)(sl->family_data))->specific_functions)
/*
* return the power mode of the sl slave : 1-ext, 0-parasite, <0 unknown
* always test family data existence before using this macro
*/
#define SLAVE_POWERMODE(sl) \
(((struct w1_therm_family_data *)(sl->family_data))->external_powered)
/*
* return the resolution in bit of the sl slave : <0 unknown
* always test family data existence before using this macro
*/
#define SLAVE_RESOLUTION(sl) \
(((struct w1_therm_family_data *)(sl->family_data))->resolution)
/*
* return the conv_time_override of the sl slave
* always test family data existence before using this macro
*/
#define SLAVE_CONV_TIME_OVERRIDE(sl) \
(((struct w1_therm_family_data *)(sl->family_data))->conv_time_override)
/*
* return the features of the sl slave
* always test family data existence before using this macro
*/
#define SLAVE_FEATURES(sl) \
(((struct w1_therm_family_data *)(sl->family_data))->features)
/*
* return whether or not a converT command has been issued to the slave
* * 0: no bulk read is pending
* * -1: conversion is in progress
* * 1: conversion done, result to be read
*/
#define SLAVE_CONVERT_TRIGGERED(sl) \
(((struct w1_therm_family_data *)(sl->family_data))->convert_triggered)
/* return the address of the refcnt in the family data */
#define THERM_REFCNT(family_data) \
(&((struct w1_therm_family_data *)family_data)->refcnt)
/* Structs definition */
/**
* struct w1_therm_family_converter - bind device specific functions
* @broken: flag for non-registred families
* @reserved: not used here
* @f: pointer to the device binding structure
* @convert: pointer to the device conversion function
* @get_conversion_time: pointer to the device conversion time function
* @set_resolution: pointer to the device set_resolution function
* @get_resolution: pointer to the device get_resolution function
* @write_data: pointer to the device writing function (2 or 3 bytes)
* @bulk_read: true if device family support bulk read, false otherwise
*/
struct w1_therm_family_converter {
u8 broken;
u16 reserved;
struct w1_family *f;
int (*convert)(u8 rom[9]);
int (*get_conversion_time)(struct w1_slave *sl);
int (*set_resolution)(struct w1_slave *sl, int val);
int (*get_resolution)(struct w1_slave *sl);
int (*write_data)(struct w1_slave *sl, const u8 *data);
bool bulk_read;
};
/**
* struct w1_therm_family_data - device data
* @rom: ROM device id (64bit Lasered ROM code + 1 CRC byte)
* @refcnt: ref count
* @external_powered: 1 device powered externally,
* 0 device parasite powered,
* -x error or undefined
* @resolution: current device resolution
* @convert_triggered: conversion state of the device
* @conv_time_override: user selected conversion time or CONV_TIME_DEFAULT
* @features: bit mask - enable temperature validity check, poll for completion
* @specific_functions: pointer to struct of device specific function
*/
struct w1_therm_family_data {
uint8_t rom[9];
atomic_t refcnt;
int external_powered;
int resolution;
int convert_triggered;
int conv_time_override;
unsigned int features;
struct w1_therm_family_converter *specific_functions;
};
/**
* struct therm_info - store temperature reading
* @rom: read device data (8 data bytes + 1 CRC byte)
* @crc: computed crc from rom
* @verdict: 1 crc checked, 0 crc not matching
*/
struct therm_info {
u8 rom[9];
u8 crc;
u8 verdict;
};
/* Hardware Functions declaration */
/**
* reset_select_slave() - reset and select a slave
* @sl: the slave to select
*
* Resets the bus and select the slave by sending a ROM MATCH cmd
* w1_reset_select_slave() from w1_io.c could not be used here because
* it sent a SKIP ROM command if only one device is on the line.
* At the beginning of the such process, sl->master->slave_count is 1 even if
* more devices are on the line, causing collision on the line.
*
* Context: The w1 master lock must be held.
*
* Return: 0 if success, negative kernel error code otherwise.
*/
static int reset_select_slave(struct w1_slave *sl);
/**
* convert_t() - Query the device for temperature conversion and read
* @sl: pointer to the slave to read
* @info: pointer to a structure to store the read results
*
* Return: 0 if success, -kernel error code otherwise
*/
static int convert_t(struct w1_slave *sl, struct therm_info *info);
/**
* read_scratchpad() - read the data in device RAM
* @sl: pointer to the slave to read
* @info: pointer to a structure to store the read results
*
* Return: 0 if success, -kernel error code otherwise
*/
static int read_scratchpad(struct w1_slave *sl, struct therm_info *info);
/**
* write_scratchpad() - write nb_bytes in the device RAM
* @sl: pointer to the slave to write in
* @data: pointer to an array of 3 bytes, as 3 bytes MUST be written
* @nb_bytes: number of bytes to be written (2 for DS18S20, 3 otherwise)
*
* Return: 0 if success, -kernel error code otherwise
*/
static int write_scratchpad(struct w1_slave *sl, const u8 *data, u8 nb_bytes);
/**
* copy_scratchpad() - Copy the content of scratchpad in device EEPROM
* @sl: slave involved
*
* Return: 0 if success, -kernel error code otherwise
*/
static int copy_scratchpad(struct w1_slave *sl);
/**
* recall_eeprom() - Restore EEPROM data to device RAM
* @sl: slave involved
*
* Return: 0 if success, -kernel error code otherwise
*/
static int recall_eeprom(struct w1_slave *sl);
/**
* read_powermode() - Query the power mode of the slave
* @sl: slave to retrieve the power mode
*
* Ask the device to get its power mode (external or parasite)
* and store the power status in the &struct w1_therm_family_data.
*
* Return:
* * 0 parasite powered device
* * 1 externally powered device
* * <0 kernel error code
*/
static int read_powermode(struct w1_slave *sl);
/**
* trigger_bulk_read() - function to trigger a bulk read on the bus
* @dev_master: the device master of the bus
*
* Send a SKIP ROM follow by a CONVERT T commmand on the bus.
* It also set the status flag in each slave &struct w1_therm_family_data
* to signal that a conversion is in progress.
*
* Return: 0 if success, -kernel error code otherwise
*/
static int trigger_bulk_read(struct w1_master *dev_master);
/* Sysfs interface declaration */
static ssize_t w1_slave_show(struct device *device,
struct device_attribute *attr, char *buf);
static ssize_t w1_slave_store(struct device *device,
struct device_attribute *attr, const char *buf, size_t size);
static ssize_t w1_seq_show(struct device *device,
struct device_attribute *attr, char *buf);
static ssize_t temperature_show(struct device *device,
struct device_attribute *attr, char *buf);
static ssize_t ext_power_show(struct device *device,
struct device_attribute *attr, char *buf);
static ssize_t resolution_show(struct device *device,
struct device_attribute *attr, char *buf);
static ssize_t resolution_store(struct device *device,
struct device_attribute *attr, const char *buf, size_t size);
static ssize_t eeprom_cmd_store(struct device *device,
struct device_attribute *attr, const char *buf, size_t size);
static ssize_t alarms_store(struct device *device,
struct device_attribute *attr, const char *buf, size_t size);
static ssize_t alarms_show(struct device *device,
struct device_attribute *attr, char *buf);
static ssize_t therm_bulk_read_store(struct device *device,
struct device_attribute *attr, const char *buf, size_t size);
static ssize_t therm_bulk_read_show(struct device *device,
struct device_attribute *attr, char *buf);
static ssize_t conv_time_show(struct device *device,
struct device_attribute *attr, char *buf);
static ssize_t conv_time_store(struct device *device,
struct device_attribute *attr, const char *buf,
size_t size);
static ssize_t features_show(struct device *device,
struct device_attribute *attr, char *buf);
static ssize_t features_store(struct device *device,
struct device_attribute *attr, const char *buf,
size_t size);
/* Attributes declarations */
static DEVICE_ATTR_RW(w1_slave);
static DEVICE_ATTR_RO(w1_seq);
static DEVICE_ATTR_RO(temperature);
static DEVICE_ATTR_RO(ext_power);
static DEVICE_ATTR_RW(resolution);
static DEVICE_ATTR_WO(eeprom_cmd);
static DEVICE_ATTR_RW(alarms);
static DEVICE_ATTR_RW(conv_time);
static DEVICE_ATTR_RW(features);
static DEVICE_ATTR_RW(therm_bulk_read); /* attribut at master level */
/* Interface Functions declaration */
/**
* w1_therm_add_slave() - Called when a new slave is discovered
* @sl: slave just discovered by the master.
*
* Called by the master when the slave is discovered on the bus. Used to
* initialize slave state before the beginning of any communication.
*
* Return: 0 - If success, negative kernel code otherwise
*/
static int w1_therm_add_slave(struct w1_slave *sl);
/**
* w1_therm_remove_slave() - Called when a slave is removed
* @sl: slave to be removed.
*
* Called by the master when the slave is considered not to be on the bus
* anymore. Used to free memory.
*/
static void w1_therm_remove_slave(struct w1_slave *sl);
/* Family attributes */
static struct attribute *w1_therm_attrs[] = {
&dev_attr_w1_slave.attr,
&dev_attr_temperature.attr,
&dev_attr_ext_power.attr,
&dev_attr_resolution.attr,
&dev_attr_eeprom_cmd.attr,
&dev_attr_alarms.attr,
&dev_attr_conv_time.attr,
&dev_attr_features.attr,
NULL,
};
static struct attribute *w1_ds18s20_attrs[] = {
&dev_attr_w1_slave.attr,
&dev_attr_temperature.attr,
&dev_attr_ext_power.attr,
&dev_attr_eeprom_cmd.attr,
&dev_attr_alarms.attr,
&dev_attr_conv_time.attr,
&dev_attr_features.attr,
NULL,
};
static struct attribute *w1_ds28ea00_attrs[] = {
&dev_attr_w1_slave.attr,
&dev_attr_w1_seq.attr,
&dev_attr_temperature.attr,
&dev_attr_ext_power.attr,
&dev_attr_resolution.attr,
&dev_attr_eeprom_cmd.attr,
&dev_attr_alarms.attr,
&dev_attr_conv_time.attr,
&dev_attr_features.attr,
NULL,
};
/* Attribute groups */
ATTRIBUTE_GROUPS(w1_therm);
ATTRIBUTE_GROUPS(w1_ds18s20);
ATTRIBUTE_GROUPS(w1_ds28ea00);
#if IS_REACHABLE(CONFIG_HWMON)
static int w1_read_temp(struct device *dev, u32 attr, int channel,
long *val);
static umode_t w1_is_visible(const void *_data, enum hwmon_sensor_types type,
u32 attr, int channel)
{
return attr == hwmon_temp_input ? 0444 : 0;
}
static int w1_read(struct device *dev, enum hwmon_sensor_types type,
u32 attr, int channel, long *val)
{
switch (type) {
case hwmon_temp:
return w1_read_temp(dev, attr, channel, val);
default:
return -EOPNOTSUPP;
}
}
static const u32 w1_temp_config[] = {
HWMON_T_INPUT,
0
};
static const struct hwmon_channel_info w1_temp = {
.type = hwmon_temp,
.config = w1_temp_config,
};
static const struct hwmon_channel_info *w1_info[] = {
&w1_temp,
NULL
};
static const struct hwmon_ops w1_hwmon_ops = {
.is_visible = w1_is_visible,
.read = w1_read,
};
static const struct hwmon_chip_info w1_chip_info = {
.ops = &w1_hwmon_ops,
.info = w1_info,
};
#define W1_CHIPINFO (&w1_chip_info)
#else
#define W1_CHIPINFO NULL
#endif
/* Family operations */
static const struct w1_family_ops w1_therm_fops = {
.add_slave = w1_therm_add_slave,
.remove_slave = w1_therm_remove_slave,
.groups = w1_therm_groups,
.chip_info = W1_CHIPINFO,
};
static const struct w1_family_ops w1_ds18s20_fops = {
.add_slave = w1_therm_add_slave,
.remove_slave = w1_therm_remove_slave,
.groups = w1_ds18s20_groups,
.chip_info = W1_CHIPINFO,
};
static const struct w1_family_ops w1_ds28ea00_fops = {
.add_slave = w1_therm_add_slave,
.remove_slave = w1_therm_remove_slave,
.groups = w1_ds28ea00_groups,
.chip_info = W1_CHIPINFO,
};
/* Family binding operations struct */
static struct w1_family w1_therm_family_DS18S20 = {
.fid = W1_THERM_DS18S20,
.fops = &w1_ds18s20_fops,
};
static struct w1_family w1_therm_family_DS18B20 = {
.fid = W1_THERM_DS18B20,
.fops = &w1_therm_fops,
};
static struct w1_family w1_therm_family_DS1822 = {
.fid = W1_THERM_DS1822,
.fops = &w1_therm_fops,
};
static struct w1_family w1_therm_family_DS28EA00 = {
.fid = W1_THERM_DS28EA00,
.fops = &w1_ds28ea00_fops,
};
static struct w1_family w1_therm_family_DS1825 = {
.fid = W1_THERM_DS1825,
.fops = &w1_therm_fops,
};
/* Device dependent func */
static inline int w1_DS18B20_convert_time(struct w1_slave *sl)
{
int ret;
if (!sl->family_data)
return -ENODEV; /* device unknown */
if (SLAVE_CONV_TIME_OVERRIDE(sl) != CONV_TIME_DEFAULT)
return SLAVE_CONV_TIME_OVERRIDE(sl);
/* Return the conversion time, depending on resolution,
* select maximum conversion time among all compatible devices
*/
switch (SLAVE_RESOLUTION(sl)) {
case 9:
ret = 95;
break;
case 10:
ret = 190;
break;
case 11:
ret = 375;
break;
case 12:
ret = 750;
break;
case 13:
ret = 850; /* GX20MH01 only. Datasheet says 500ms, but that's not enough. */
break;
case 14:
ret = 1600; /* GX20MH01 only. Datasheet says 1000ms - not enough */
break;
default:
ret = 750;
}
return ret;
}
static inline int w1_DS18S20_convert_time(struct w1_slave *sl)
{
if (!sl->family_data)
return -ENODEV; /* device unknown */
if (SLAVE_CONV_TIME_OVERRIDE(sl) == CONV_TIME_DEFAULT)
return 750; /* default for DS18S20 */
else
return SLAVE_CONV_TIME_OVERRIDE(sl);
}
static inline int w1_DS18B20_write_data(struct w1_slave *sl,
const u8 *data)
{
return write_scratchpad(sl, data, 3);
}
static inline int w1_DS18S20_write_data(struct w1_slave *sl,
const u8 *data)
{
/* No config register */
return write_scratchpad(sl, data, 2);
}
static inline int w1_DS18B20_set_resolution(struct w1_slave *sl, int val)
{
int ret;
struct therm_info info, info2;
/* DS18B20 resolution is 9 to 12 bits */
/* GX20MH01 resolution is 9 to 14 bits */
if (val < W1_THERM_RESOLUTION_MIN || val > W1_THERM_RESOLUTION_MAX)
return -EINVAL;
/* Calc bit value from resolution */
val = (val - W1_THERM_RESOLUTION_MIN) << W1_THERM_RESOLUTION_SHIFT;
/*
* Read the scratchpad to change only the required bits
* (bit5 & bit 6 from byte 4)
*/
ret = read_scratchpad(sl, &info);
if (ret)
return ret;
info.rom[4] &= ~W1_THERM_RESOLUTION_MASK;
info.rom[4] |= val;
/* Write data in the device RAM */
ret = w1_DS18B20_write_data(sl, info.rom + 2);
if (ret)
return ret;
/* Have to read back the resolution to verify an actual value
* GX20MH01 and DS18B20 are indistinguishable by family number, but resolutions differ
* Some DS18B20 clones don't support resolution change
*/
ret = read_scratchpad(sl, &info2);
if (ret)
/* Scratchpad read fail */
return ret;
if ((info2.rom[4] & W1_THERM_RESOLUTION_MASK) == (info.rom[4] & W1_THERM_RESOLUTION_MASK))
return 0;
/* Resolution verify error */
return -EIO;
}
static inline int w1_DS18B20_get_resolution(struct w1_slave *sl)
{
int ret;
int resolution;
struct therm_info info;
ret = read_scratchpad(sl, &info);
if (ret)
return ret;
resolution = ((info.rom[4] & W1_THERM_RESOLUTION_MASK) >> W1_THERM_RESOLUTION_SHIFT)
+ W1_THERM_RESOLUTION_MIN;
/* GX20MH01 has one special case:
* >=14 means 14 bits when getting resolution from bit value.
* Other devices have no more then 12 bits.
*/
if (resolution > W1_THERM_RESOLUTION_MAX)
resolution = W1_THERM_RESOLUTION_MAX;
return resolution;
}
/**
* w1_DS18B20_convert_temp() - temperature computation for DS18B20
* @rom: data read from device RAM (8 data bytes + 1 CRC byte)
*
* Can be called for any DS18B20 compliant device.
*
* Return: value in millidegrees Celsius.
*/
static inline int w1_DS18B20_convert_temp(u8 rom[9])
{
u16 bv;
s16 t;
/* Signed 16-bit value to unsigned, cpu order */
bv = le16_to_cpup((__le16 *)rom);
/* Config register bit R2 = 1 - GX20MH01 in 13 or 14 bit resolution mode */
if (rom[4] & 0x80) {
/* Insert two temperature bits from config register */
/* Avoid arithmetic shift of signed value */
bv = (bv << 2) | (rom[4] & 3);
t = (s16) bv; /* Degrees, lowest bit is 2^-6 */
return (int)t * 1000 / 64; /* Sign-extend to int; millidegrees */
}
t = (s16)bv; /* Degrees, lowest bit is 2^-4 */
return (int)t * 1000 / 16; /* Sign-extend to int; millidegrees */
}
/**
* w1_DS18S20_convert_temp() - temperature computation for DS18S20
* @rom: data read from device RAM (8 data bytes + 1 CRC byte)
*
* Can be called for any DS18S20 compliant device.
*
* Return: value in millidegrees Celsius.
*/
static inline int w1_DS18S20_convert_temp(u8 rom[9])
{
int t, h;
if (!rom[7]) {
pr_debug("%s: Invalid argument for conversion\n", __func__);
return 0;
}
if (rom[1] == 0)
t = ((s32)rom[0] >> 1)*1000;
else
t = 1000*(-1*(s32)(0x100-rom[0]) >> 1);
t -= 250;
h = 1000*((s32)rom[7] - (s32)rom[6]);
h /= (s32)rom[7];
t += h;
return t;
}
/* Device capability description */
/* GX20MH01 device shares family number and structure with DS18B20 */
static struct w1_therm_family_converter w1_therm_families[] = {
{
.f = &w1_therm_family_DS18S20,
.convert = w1_DS18S20_convert_temp,
.get_conversion_time = w1_DS18S20_convert_time,
.set_resolution = NULL, /* no config register */
.get_resolution = NULL, /* no config register */
.write_data = w1_DS18S20_write_data,
.bulk_read = true
},
{
.f = &w1_therm_family_DS1822,
.convert = w1_DS18B20_convert_temp,
.get_conversion_time = w1_DS18B20_convert_time,
.set_resolution = w1_DS18B20_set_resolution,
.get_resolution = w1_DS18B20_get_resolution,
.write_data = w1_DS18B20_write_data,
.bulk_read = true
},
{
/* Also used for GX20MH01 */
.f = &w1_therm_family_DS18B20,
.convert = w1_DS18B20_convert_temp,
.get_conversion_time = w1_DS18B20_convert_time,
.set_resolution = w1_DS18B20_set_resolution,
.get_resolution = w1_DS18B20_get_resolution,
.write_data = w1_DS18B20_write_data,
.bulk_read = true
},
{
.f = &w1_therm_family_DS28EA00,
.convert = w1_DS18B20_convert_temp,
.get_conversion_time = w1_DS18B20_convert_time,
.set_resolution = w1_DS18B20_set_resolution,
.get_resolution = w1_DS18B20_get_resolution,
.write_data = w1_DS18B20_write_data,
.bulk_read = false
},
{
.f = &w1_therm_family_DS1825,
.convert = w1_DS18B20_convert_temp,
.get_conversion_time = w1_DS18B20_convert_time,
.set_resolution = w1_DS18B20_set_resolution,
.get_resolution = w1_DS18B20_get_resolution,
.write_data = w1_DS18B20_write_data,
.bulk_read = true
}
};
/* Helpers Functions */
/**
* device_family() - Retrieve a pointer on &struct w1_therm_family_converter
* @sl: slave to retrieve the device specific structure
*
* Return: pointer to the slaves's family converter, NULL if not known
*/
static struct w1_therm_family_converter *device_family(struct w1_slave *sl)
{
struct w1_therm_family_converter *ret = NULL;
int i;
for (i = 0; i < ARRAY_SIZE(w1_therm_families); ++i) {
if (w1_therm_families[i].f->fid == sl->family->fid) {
ret = &w1_therm_families[i];
break;
}
}
return ret;
}
/**
* bus_mutex_lock() - Acquire the mutex
* @lock: w1 bus mutex to acquire
*
* It try to acquire the mutex W1_THERM_MAX_TRY times and wait
* W1_THERM_RETRY_DELAY between 2 attempts.
*
* Return: true is mutex is acquired and lock, false otherwise
*/
static inline bool bus_mutex_lock(struct mutex *lock)
{
int max_trying = W1_THERM_MAX_TRY;
/* try to acquire the mutex, if not, sleep retry_delay before retry) */
while (mutex_lock_interruptible(lock) != 0 && max_trying > 0) {
unsigned long sleep_rem;
sleep_rem = msleep_interruptible(W1_THERM_RETRY_DELAY);
if (!sleep_rem)
max_trying--;
}
if (!max_trying)
return false; /* Didn't acquire the bus mutex */
return true;
}
/**
* check_family_data() - Check if family data and specific functions are present
* @sl: W1 device data
*
* Return: 0 - OK, negative value - error
*/
static int check_family_data(struct w1_slave *sl)
{
if ((!sl->family_data) || (!SLAVE_SPECIFIC_FUNC(sl))) {
dev_info(&sl->dev,
"%s: Device is not supported by the driver\n", __func__);
return -EINVAL; /* No device family */
}
return 0;
}
/**
* bulk_read_support() - check if slave support bulk read
* @sl: device to check the ability
*
* Return: true if bulk read is supported, false if not or error
*/
static inline bool bulk_read_support(struct w1_slave *sl)
{
if (SLAVE_SPECIFIC_FUNC(sl))
return SLAVE_SPECIFIC_FUNC(sl)->bulk_read;
dev_info(&sl->dev,
"%s: Device not supported by the driver\n", __func__);
return false; /* No device family */
}
/**
* conversion_time() - get the Tconv for the slave
* @sl: device to get the conversion time
*
* On device supporting resolution settings, conversion time depend
* on the resolution setting. This helper function get the slave timing,
* depending on its current setting.
*
* Return: conversion time in ms, negative values are kernel error code
*/
static inline int conversion_time(struct w1_slave *sl)
{
if (SLAVE_SPECIFIC_FUNC(sl))
return SLAVE_SPECIFIC_FUNC(sl)->get_conversion_time(sl);
dev_info(&sl->dev,
"%s: Device not supported by the driver\n", __func__);
return -ENODEV; /* No device family */
}
/**
* temperature_from_RAM() - Convert the read info to temperature
* @sl: device that sent the RAM data
* @rom: read value on the slave device RAM
*
* Device dependent, the function bind the correct computation method.
*
* Return: temperature in 1/1000degC, 0 on error.
*/
static inline int temperature_from_RAM(struct w1_slave *sl, u8 rom[9])
{
if (SLAVE_SPECIFIC_FUNC(sl))
return SLAVE_SPECIFIC_FUNC(sl)->convert(rom);
dev_info(&sl->dev,
"%s: Device not supported by the driver\n", __func__);
return 0; /* No device family */
}
/**
* int_to_short() - Safe casting of int to short
*
* @i: integer to be converted to short
*
* Device register use 1 byte to store signed integer.
* This helper function convert the int in a signed short,
* using the min/max values that device can measure as limits.
* min/max values are defined by macro.
*
* Return: a short in the range of min/max value
*/
static inline s8 int_to_short(int i)
{
/* Prepare to cast to short by eliminating out of range values */
i = clamp(i, MIN_TEMP, MAX_TEMP);
return (s8) i;
}
/* Interface Functions */
static int w1_therm_add_slave(struct w1_slave *sl)
{
struct w1_therm_family_converter *sl_family_conv;
/* Allocate memory */
sl->family_data = kzalloc(sizeof(struct w1_therm_family_data),
GFP_KERNEL);
if (!sl->family_data)
return -ENOMEM;
atomic_set(THERM_REFCNT(sl->family_data), 1);
/* Get a pointer to the device specific function struct */
sl_family_conv = device_family(sl);
if (!sl_family_conv) {
kfree(sl->family_data);
return -ENODEV;
}
/* save this pointer to the device structure */
SLAVE_SPECIFIC_FUNC(sl) = sl_family_conv;
if (bulk_read_support(sl)) {
/*
* add the sys entry to trigger bulk_read
* at master level only the 1st time
*/
if (!bulk_read_device_counter) {
int err = device_create_file(&sl->master->dev,
&dev_attr_therm_bulk_read);
if (err)
dev_warn(&sl->dev,
"%s: Device has been added, but bulk read is unavailable. err=%d\n",
__func__, err);
}
/* Increment the counter */
bulk_read_device_counter++;
}
/* Getting the power mode of the device {external, parasite} */
SLAVE_POWERMODE(sl) = read_powermode(sl);
if (SLAVE_POWERMODE(sl) < 0) {
/* no error returned as device has been added */
dev_warn(&sl->dev,
"%s: Device has been added, but power_mode may be corrupted. err=%d\n",
__func__, SLAVE_POWERMODE(sl));
}
/* Getting the resolution of the device */
if (SLAVE_SPECIFIC_FUNC(sl)->get_resolution) {
SLAVE_RESOLUTION(sl) =
SLAVE_SPECIFIC_FUNC(sl)->get_resolution(sl);
if (SLAVE_RESOLUTION(sl) < 0) {
/* no error returned as device has been added */
dev_warn(&sl->dev,
"%s:Device has been added, but resolution may be corrupted. err=%d\n",
__func__, SLAVE_RESOLUTION(sl));
}
}
/* Finally initialize convert_triggered flag */
SLAVE_CONVERT_TRIGGERED(sl) = 0;
return 0;
}
static void w1_therm_remove_slave(struct w1_slave *sl)
{
int refcnt = atomic_sub_return(1, THERM_REFCNT(sl->family_data));
if (bulk_read_support(sl)) {
bulk_read_device_counter--;
/* Delete the entry if no more device support the feature */
if (!bulk_read_device_counter)
device_remove_file(&sl->master->dev,
&dev_attr_therm_bulk_read);
}
while (refcnt) {
msleep(1000);
refcnt = atomic_read(THERM_REFCNT(sl->family_data));
}
kfree(sl->family_data);
sl->family_data = NULL;
}
/* Hardware Functions */
/* Safe version of reset_select_slave - avoid using the one in w_io.c */
static int reset_select_slave(struct w1_slave *sl)
{
u8 match[9] = { W1_MATCH_ROM, };
u64 rn = le64_to_cpu(*((u64 *)&sl->reg_num));
if (w1_reset_bus(sl->master))
return -ENODEV;
memcpy(&match[1], &rn, 8);
w1_write_block(sl->master, match, 9);
return 0;
}
/**
* w1_poll_completion - Poll for operation completion, with timeout
* @dev_master: the device master of the bus
* @tout_ms: timeout in milliseconds
*
* The device is answering 0's while an operation is in progress and 1's after it completes
* Timeout may happen if the previous command was not recognised due to a line noise
*
* Return: 0 - OK, negative error - timeout
*/
static int w1_poll_completion(struct w1_master *dev_master, int tout_ms)
{
int i;
for (i = 0; i < tout_ms/W1_POLL_PERIOD; i++) {
/* Delay is before poll, for device to recognize a command */
msleep(W1_POLL_PERIOD);
/* Compare all 8 bits to mitigate a noise on the bus */
if (w1_read_8(dev_master) == 0xFF)
break;
}
if (i == tout_ms/W1_POLL_PERIOD)
return -EIO;
return 0;
}
static int convert_t(struct w1_slave *sl, struct therm_info *info)
{
struct w1_master *dev_master = sl->master;
int max_trying = W1_THERM_MAX_TRY;
int t_conv;
int ret = -ENODEV;
bool strong_pullup;
if (!sl->family_data)
goto error;
strong_pullup = (w1_strong_pullup == 2 ||
(!SLAVE_POWERMODE(sl) &&
w1_strong_pullup));
if (strong_pullup && SLAVE_FEATURES(sl) & W1_THERM_POLL_COMPLETION) {
dev_warn(&sl->dev,
"%s: Disabling W1_THERM_POLL_COMPLETION in parasite power mode.\n",
__func__);
SLAVE_FEATURES(sl) &= ~W1_THERM_POLL_COMPLETION;
}
/* get conversion duration device and id dependent */
t_conv = conversion_time(sl);
memset(info->rom, 0, sizeof(info->rom));
/* prevent the slave from going away in sleep */
atomic_inc(THERM_REFCNT(sl->family_data));
if (!bus_mutex_lock(&dev_master->bus_mutex)) {
ret = -EAGAIN; /* Didn't acquire the mutex */
goto dec_refcnt;
}
while (max_trying-- && ret) { /* ret should be 0 */
info->verdict = 0;
info->crc = 0;
/* safe version to select slave */
if (!reset_select_slave(sl)) {
unsigned long sleep_rem;
/* 750ms strong pullup (or delay) after the convert */
if (strong_pullup)
w1_next_pullup(dev_master, t_conv);
w1_write_8(dev_master, W1_CONVERT_TEMP);
if (strong_pullup) { /*some device need pullup */
sleep_rem = msleep_interruptible(t_conv);
if (sleep_rem != 0) {
ret = -EINTR;
goto mt_unlock;
}
mutex_unlock(&dev_master->bus_mutex);
} else { /*no device need pullup */
if (SLAVE_FEATURES(sl) & W1_THERM_POLL_COMPLETION) {
ret = w1_poll_completion(dev_master, W1_POLL_CONVERT_TEMP);
if (ret) {
dev_dbg(&sl->dev, "%s: Timeout\n", __func__);
goto mt_unlock;
}
mutex_unlock(&dev_master->bus_mutex);
} else {
/* Fixed delay */
mutex_unlock(&dev_master->bus_mutex);
sleep_rem = msleep_interruptible(t_conv);
if (sleep_rem != 0) {
ret = -EINTR;
goto dec_refcnt;
}
}
}
ret = read_scratchpad(sl, info);
/* If enabled, check for conversion success */
if ((SLAVE_FEATURES(sl) & W1_THERM_CHECK_RESULT) &&
(info->rom[6] == 0xC) &&
((info->rom[1] == 0x5 && info->rom[0] == 0x50) ||
(info->rom[1] == 0x7 && info->rom[0] == 0xFF))
) {
/* Invalid reading (scratchpad byte 6 = 0xC)
* due to insufficient conversion time
* or power failure.
*/
ret = -EIO;
}
goto dec_refcnt;
}
}
mt_unlock:
mutex_unlock(&dev_master->bus_mutex);
dec_refcnt:
atomic_dec(THERM_REFCNT(sl->family_data));
error:
return ret;
}
static int conv_time_measure(struct w1_slave *sl, int *conv_time)
{
struct therm_info inf,
*info = &inf;
struct w1_master *dev_master = sl->master;
int max_trying = W1_THERM_MAX_TRY;
int ret = -ENODEV;
bool strong_pullup;
if (!sl->family_data)
goto error;
strong_pullup = (w1_strong_pullup == 2 ||
(!SLAVE_POWERMODE(sl) &&
w1_strong_pullup));
if (strong_pullup) {
pr_info("%s: Measure with strong_pullup is not supported.\n", __func__);
return -EINVAL;
}
memset(info->rom, 0, sizeof(info->rom));
/* prevent the slave from going away in sleep */
atomic_inc(THERM_REFCNT(sl->family_data));
if (!bus_mutex_lock(&dev_master->bus_mutex)) {
ret = -EAGAIN; /* Didn't acquire the mutex */
goto dec_refcnt;
}
while (max_trying-- && ret) { /* ret should be 0 */
info->verdict = 0;
info->crc = 0;
/* safe version to select slave */
if (!reset_select_slave(sl)) {
int j_start, j_end;
/*no device need pullup */
w1_write_8(dev_master, W1_CONVERT_TEMP);
j_start = jiffies;
ret = w1_poll_completion(dev_master, W1_POLL_CONVERT_TEMP);
if (ret) {
dev_dbg(&sl->dev, "%s: Timeout\n", __func__);
goto mt_unlock;
}
j_end = jiffies;
/* 1.2x increase for variation and changes over temperature range */
*conv_time = jiffies_to_msecs(j_end-j_start)*12/10;
pr_debug("W1 Measure complete, conv_time = %d, HZ=%d.\n",
*conv_time, HZ);
if (*conv_time <= CONV_TIME_MEASURE) {
ret = -EIO;
goto mt_unlock;
}
mutex_unlock(&dev_master->bus_mutex);
ret = read_scratchpad(sl, info);
goto dec_refcnt;
}
}
mt_unlock:
mutex_unlock(&dev_master->bus_mutex);
dec_refcnt:
atomic_dec(THERM_REFCNT(sl->family_data));
error:
return ret;
}
static int read_scratchpad(struct w1_slave *sl, struct therm_info *info)
{
struct w1_master *dev_master = sl->master;
int max_trying = W1_THERM_MAX_TRY;
int ret = -ENODEV;
info->verdict = 0;
if (!sl->family_data)
goto error;
memset(info->rom, 0, sizeof(info->rom));
/* prevent the slave from going away in sleep */
atomic_inc(THERM_REFCNT(sl->family_data));
if (!bus_mutex_lock(&dev_master->bus_mutex)) {
ret = -EAGAIN; /* Didn't acquire the mutex */
goto dec_refcnt;
}
while (max_trying-- && ret) { /* ret should be 0 */
/* safe version to select slave */
if (!reset_select_slave(sl)) {
u8 nb_bytes_read;
w1_write_8(dev_master, W1_READ_SCRATCHPAD);
nb_bytes_read = w1_read_block(dev_master, info->rom, 9);
if (nb_bytes_read != 9) {
dev_warn(&sl->dev,
"w1_read_block(): returned %u instead of 9.\n",
nb_bytes_read);
ret = -EIO;
}
info->crc = w1_calc_crc8(info->rom, 8);
if (info->rom[8] == info->crc) {
info->verdict = 1;
ret = 0;
} else
ret = -EIO; /* CRC not checked */
}
}
mutex_unlock(&dev_master->bus_mutex);
dec_refcnt:
atomic_dec(THERM_REFCNT(sl->family_data));
error:
return ret;
}
static int write_scratchpad(struct w1_slave *sl, const u8 *data, u8 nb_bytes)
{
struct w1_master *dev_master = sl->master;
int max_trying = W1_THERM_MAX_TRY;
int ret = -ENODEV;
if (!sl->family_data)
goto error;
/* prevent the slave from going away in sleep */
atomic_inc(THERM_REFCNT(sl->family_data));
if (!bus_mutex_lock(&dev_master->bus_mutex)) {
ret = -EAGAIN; /* Didn't acquire the mutex */
goto dec_refcnt;
}
while (max_trying-- && ret) { /* ret should be 0 */
/* safe version to select slave */
if (!reset_select_slave(sl)) {
w1_write_8(dev_master, W1_WRITE_SCRATCHPAD);
w1_write_block(dev_master, data, nb_bytes);
ret = 0;
}
}
mutex_unlock(&dev_master->bus_mutex);
dec_refcnt:
atomic_dec(THERM_REFCNT(sl->family_data));
error:
return ret;
}
static int copy_scratchpad(struct w1_slave *sl)
{
struct w1_master *dev_master = sl->master;
int max_trying = W1_THERM_MAX_TRY;
int t_write, ret = -ENODEV;
bool strong_pullup;
if (!sl->family_data)
goto error;
t_write = W1_THERM_EEPROM_WRITE_DELAY;
strong_pullup = (w1_strong_pullup == 2 ||
(!SLAVE_POWERMODE(sl) &&
w1_strong_pullup));
/* prevent the slave from going away in sleep */
atomic_inc(THERM_REFCNT(sl->family_data));
if (!bus_mutex_lock(&dev_master->bus_mutex)) {
ret = -EAGAIN; /* Didn't acquire the mutex */
goto dec_refcnt;
}
while (max_trying-- && ret) { /* ret should be 0 */
/* safe version to select slave */
if (!reset_select_slave(sl)) {
unsigned long sleep_rem;
/* 10ms strong pullup (or delay) after the convert */
if (strong_pullup)
w1_next_pullup(dev_master, t_write);
w1_write_8(dev_master, W1_COPY_SCRATCHPAD);
if (strong_pullup) {
sleep_rem = msleep_interruptible(t_write);
if (sleep_rem != 0) {
ret = -EINTR;
goto mt_unlock;
}
}
ret = 0;
}
}
mt_unlock:
mutex_unlock(&dev_master->bus_mutex);
dec_refcnt:
atomic_dec(THERM_REFCNT(sl->family_data));
error:
return ret;
}
static int recall_eeprom(struct w1_slave *sl)
{
struct w1_master *dev_master = sl->master;
int max_trying = W1_THERM_MAX_TRY;
int ret = -ENODEV;
if (!sl->family_data)
goto error;
/* prevent the slave from going away in sleep */
atomic_inc(THERM_REFCNT(sl->family_data));
if (!bus_mutex_lock(&dev_master->bus_mutex)) {
ret = -EAGAIN; /* Didn't acquire the mutex */
goto dec_refcnt;
}
while (max_trying-- && ret) { /* ret should be 0 */
/* safe version to select slave */
if (!reset_select_slave(sl)) {
w1_write_8(dev_master, W1_RECALL_EEPROM);
ret = w1_poll_completion(dev_master, W1_POLL_RECALL_EEPROM);
}
}
mutex_unlock(&dev_master->bus_mutex);
dec_refcnt:
atomic_dec(THERM_REFCNT(sl->family_data));
error:
return ret;
}
static int read_powermode(struct w1_slave *sl)
{
struct w1_master *dev_master = sl->master;
int max_trying = W1_THERM_MAX_TRY;
int ret = -ENODEV;
if (!sl->family_data)
goto error;
/* prevent the slave from going away in sleep */
atomic_inc(THERM_REFCNT(sl->family_data));
if (!bus_mutex_lock(&dev_master->bus_mutex)) {
ret = -EAGAIN; /* Didn't acquire the mutex */
goto dec_refcnt;
}
while ((max_trying--) && (ret < 0)) {
/* safe version to select slave */
if (!reset_select_slave(sl)) {
w1_write_8(dev_master, W1_READ_PSUPPLY);
/*
* Emit a read time slot and read only one bit,
* 1 is externally powered,
* 0 is parasite powered
*/
ret = w1_touch_bit(dev_master, 1);
/* ret should be either 1 either 0 */
}
}
mutex_unlock(&dev_master->bus_mutex);
dec_refcnt:
atomic_dec(THERM_REFCNT(sl->family_data));
error:
return ret;
}
static int trigger_bulk_read(struct w1_master *dev_master)
{
struct w1_slave *sl = NULL; /* used to iterate through slaves */
int max_trying = W1_THERM_MAX_TRY;
int t_conv = 0;
int ret = -ENODEV;
bool strong_pullup = false;
/*
* Check whether there are parasite powered device on the bus,
* and compute duration of conversion for these devices
* so we can apply a strong pullup if required
*/
list_for_each_entry(sl, &dev_master->slist, w1_slave_entry) {
if (!sl->family_data)
goto error;
if (bulk_read_support(sl)) {
int t_cur = conversion_time(sl);
t_conv = t_cur > t_conv ? t_cur : t_conv;
strong_pullup = strong_pullup ||
(w1_strong_pullup == 2 ||
(!SLAVE_POWERMODE(sl) &&
w1_strong_pullup));
}
}
/*
* t_conv is the max conversion time required on the bus
* If its 0, no device support the bulk read feature
*/
if (!t_conv)
goto error;
if (!bus_mutex_lock(&dev_master->bus_mutex)) {
ret = -EAGAIN; /* Didn't acquire the mutex */
goto error;
}
while ((max_trying--) && (ret < 0)) { /* ret should be either 0 */
if (!w1_reset_bus(dev_master)) { /* Just reset the bus */
unsigned long sleep_rem;
w1_write_8(dev_master, W1_SKIP_ROM);
if (strong_pullup) /* Apply pullup if required */
w1_next_pullup(dev_master, t_conv);
w1_write_8(dev_master, W1_CONVERT_TEMP);
/* set a flag to instruct that converT pending */
list_for_each_entry(sl,
&dev_master->slist, w1_slave_entry) {
if (bulk_read_support(sl))
SLAVE_CONVERT_TRIGGERED(sl) = -1;
}
if (strong_pullup) { /* some device need pullup */
sleep_rem = msleep_interruptible(t_conv);
if (sleep_rem != 0) {
ret = -EINTR;
goto mt_unlock;
}
mutex_unlock(&dev_master->bus_mutex);
} else {
mutex_unlock(&dev_master->bus_mutex);
sleep_rem = msleep_interruptible(t_conv);
if (sleep_rem != 0) {
ret = -EINTR;
goto set_flag;
}
}
ret = 0;
goto set_flag;
}
}
mt_unlock:
mutex_unlock(&dev_master->bus_mutex);
set_flag:
/* set a flag to register convsersion is done */
list_for_each_entry(sl, &dev_master->slist, w1_slave_entry) {
if (bulk_read_support(sl))
SLAVE_CONVERT_TRIGGERED(sl) = 1;
}
error:
return ret;
}
/* Sysfs Interface definition */
static ssize_t w1_slave_show(struct device *device,
struct device_attribute *attr, char *buf)
{
struct w1_slave *sl = dev_to_w1_slave(device);
struct therm_info info;
u8 *family_data = sl->family_data;
int ret, i;
ssize_t c = PAGE_SIZE;
if (bulk_read_support(sl)) {
if (SLAVE_CONVERT_TRIGGERED(sl) < 0) {
dev_dbg(device,
"%s: Conversion in progress, retry later\n",
__func__);
return 0;
} else if (SLAVE_CONVERT_TRIGGERED(sl) > 0) {
/* A bulk read has been issued, read the device RAM */
ret = read_scratchpad(sl, &info);
SLAVE_CONVERT_TRIGGERED(sl) = 0;
} else
ret = convert_t(sl, &info);
} else
ret = convert_t(sl, &info);
if (ret < 0) {
dev_dbg(device,
"%s: Temperature data may be corrupted. err=%d\n",
__func__, ret);
return 0;
}
for (i = 0; i < 9; ++i)
c -= snprintf(buf + PAGE_SIZE - c, c, "%02x ", info.rom[i]);
c -= snprintf(buf + PAGE_SIZE - c, c, ": crc=%02x %s\n",
info.crc, (info.verdict) ? "YES" : "NO");
if (info.verdict)
memcpy(family_data, info.rom, sizeof(info.rom));
else
dev_warn(device, "%s:Read failed CRC check\n", __func__);
for (i = 0; i < 9; ++i)
c -= snprintf(buf + PAGE_SIZE - c, c, "%02x ",
((u8 *)family_data)[i]);
c -= snprintf(buf + PAGE_SIZE - c, c, "t=%d\n",
temperature_from_RAM(sl, info.rom));
ret = PAGE_SIZE - c;
return ret;
}
static ssize_t w1_slave_store(struct device *device,
struct device_attribute *attr, const char *buf,
size_t size)
{
int val, ret = 0;
struct w1_slave *sl = dev_to_w1_slave(device);
ret = kstrtoint(buf, 10, &val); /* converting user entry to int */
if (ret) { /* conversion error */
dev_info(device,
"%s: conversion error. err= %d\n", __func__, ret);
return size; /* return size to avoid call back again */
}
if ((!sl->family_data) || (!SLAVE_SPECIFIC_FUNC(sl))) {
dev_info(device,
"%s: Device not supported by the driver\n", __func__);
return size; /* No device family */
}
if (val == 0) /* val=0 : trigger a EEPROM save */
ret = copy_scratchpad(sl);
else {
if (SLAVE_SPECIFIC_FUNC(sl)->set_resolution)
ret = SLAVE_SPECIFIC_FUNC(sl)->set_resolution(sl, val);
}
if (ret) {
dev_warn(device, "%s: Set resolution - error %d\n", __func__, ret);
/* Propagate error to userspace */
return ret;
}
SLAVE_RESOLUTION(sl) = val;
/* Reset the conversion time to default - it depends on resolution */
SLAVE_CONV_TIME_OVERRIDE(sl) = CONV_TIME_DEFAULT;
return size; /* always return size to avoid infinite calling */
}
static ssize_t temperature_show(struct device *device,
struct device_attribute *attr, char *buf)
{
struct w1_slave *sl = dev_to_w1_slave(device);
struct therm_info info;
int ret = 0;
if ((!sl->family_data) || (!SLAVE_SPECIFIC_FUNC(sl))) {
dev_info(device,
"%s: Device not supported by the driver\n", __func__);
return 0; /* No device family */
}
if (bulk_read_support(sl)) {
if (SLAVE_CONVERT_TRIGGERED(sl) < 0) {
dev_dbg(device,
"%s: Conversion in progress, retry later\n",
__func__);
return 0;
} else if (SLAVE_CONVERT_TRIGGERED(sl) > 0) {
/* A bulk read has been issued, read the device RAM */
ret = read_scratchpad(sl, &info);
SLAVE_CONVERT_TRIGGERED(sl) = 0;
} else
ret = convert_t(sl, &info);
} else
ret = convert_t(sl, &info);
if (ret < 0) {
dev_dbg(device,
"%s: Temperature data may be corrupted. err=%d\n",
__func__, ret);
return 0;
}
return sprintf(buf, "%d\n", temperature_from_RAM(sl, info.rom));
}
static ssize_t ext_power_show(struct device *device,
struct device_attribute *attr, char *buf)
{
struct w1_slave *sl = dev_to_w1_slave(device);
if (!sl->family_data) {
dev_info(device,
"%s: Device not supported by the driver\n", __func__);
return 0; /* No device family */
}
/* Getting the power mode of the device {external, parasite} */
SLAVE_POWERMODE(sl) = read_powermode(sl);
if (SLAVE_POWERMODE(sl) < 0) {
dev_dbg(device,
"%s: Power_mode may be corrupted. err=%d\n",
__func__, SLAVE_POWERMODE(sl));
}
return sprintf(buf, "%d\n", SLAVE_POWERMODE(sl));
}
static ssize_t resolution_show(struct device *device,
struct device_attribute *attr, char *buf)
{
struct w1_slave *sl = dev_to_w1_slave(device);
if ((!sl->family_data) || (!SLAVE_SPECIFIC_FUNC(sl))) {
dev_info(device,
"%s: Device not supported by the driver\n", __func__);
return 0; /* No device family */
}
/* get the correct function depending on the device */
SLAVE_RESOLUTION(sl) = SLAVE_SPECIFIC_FUNC(sl)->get_resolution(sl);
if (SLAVE_RESOLUTION(sl) < 0) {
dev_dbg(device,
"%s: Resolution may be corrupted. err=%d\n",
__func__, SLAVE_RESOLUTION(sl));
}
return sprintf(buf, "%d\n", SLAVE_RESOLUTION(sl));
}
static ssize_t resolution_store(struct device *device,
struct device_attribute *attr, const char *buf, size_t size)
{
struct w1_slave *sl = dev_to_w1_slave(device);
int val;
int ret = 0;
ret = kstrtoint(buf, 10, &val); /* converting user entry to int */
if (ret) { /* conversion error */
dev_info(device,
"%s: conversion error. err= %d\n", __func__, ret);
return size; /* return size to avoid call back again */
}
if ((!sl->family_data) || (!SLAVE_SPECIFIC_FUNC(sl))) {
dev_info(device,
"%s: Device not supported by the driver\n", __func__);
return size; /* No device family */
}
/*
* Don't deal with the val enterd by user,
* only device knows what is correct or not
*/
/* get the correct function depending on the device */
ret = SLAVE_SPECIFIC_FUNC(sl)->set_resolution(sl, val);
if (ret)
return ret;
SLAVE_RESOLUTION(sl) = val;
/* Reset the conversion time to default because it depends on resolution */
SLAVE_CONV_TIME_OVERRIDE(sl) = CONV_TIME_DEFAULT;
return size;
}
static ssize_t eeprom_cmd_store(struct device *device,
struct device_attribute *attr, const char *buf, size_t size)
{
struct w1_slave *sl = dev_to_w1_slave(device);
int ret = -EINVAL; /* Invalid argument */
if (size == sizeof(EEPROM_CMD_WRITE)) {
if (!strncmp(buf, EEPROM_CMD_WRITE, sizeof(EEPROM_CMD_WRITE)-1))
ret = copy_scratchpad(sl);
} else if (size == sizeof(EEPROM_CMD_READ)) {
if (!strncmp(buf, EEPROM_CMD_READ, sizeof(EEPROM_CMD_READ)-1))
ret = recall_eeprom(sl);
}
if (ret)
dev_info(device, "%s: error in process %d\n", __func__, ret);
return size;
}
static ssize_t alarms_show(struct device *device,
struct device_attribute *attr, char *buf)
{
struct w1_slave *sl = dev_to_w1_slave(device);
int ret;
s8 th = 0, tl = 0;
struct therm_info scratchpad;
ret = read_scratchpad(sl, &scratchpad);
if (!ret) {
th = scratchpad.rom[2]; /* TH is byte 2 */
tl = scratchpad.rom[3]; /* TL is byte 3 */
} else {
dev_info(device,
"%s: error reading alarms register %d\n",
__func__, ret);
}
return sprintf(buf, "%hd %hd\n", tl, th);
}
static ssize_t alarms_store(struct device *device,
struct device_attribute *attr, const char *buf, size_t size)
{
struct w1_slave *sl = dev_to_w1_slave(device);
struct therm_info info;
u8 new_config_register[3]; /* array of data to be written */
int temp, ret;
char *token = NULL;
s8 tl, th, tt; /* 1 byte per value + temp ring order */
char *p_args, *orig;
p_args = orig = kmalloc(size, GFP_KERNEL);
/* Safe string copys as buf is const */
if (!p_args) {
dev_warn(device,
"%s: error unable to allocate memory %d\n",
__func__, -ENOMEM);
return size;
}
strcpy(p_args, buf);
/* Split string using space char */
token = strsep(&p_args, " ");
if (!token) {
dev_info(device,
"%s: error parsing args %d\n", __func__, -EINVAL);
goto free_m;
}
/* Convert 1st entry to int */
ret = kstrtoint (token, 10, &temp);
if (ret) {
dev_info(device,
"%s: error parsing args %d\n", __func__, ret);
goto free_m;
}
tl = int_to_short(temp);
/* Split string using space char */
token = strsep(&p_args, " ");
if (!token) {
dev_info(device,
"%s: error parsing args %d\n", __func__, -EINVAL);
goto free_m;
}
/* Convert 2nd entry to int */
ret = kstrtoint (token, 10, &temp);
if (ret) {
dev_info(device,
"%s: error parsing args %d\n", __func__, ret);
goto free_m;
}
/* Prepare to cast to short by eliminating out of range values */
th = int_to_short(temp);
/* Reorder if required th and tl */
if (tl > th) {
tt = tl; tl = th; th = tt;
}
/*
* Read the scratchpad to change only the required bits
* (th : byte 2 - tl: byte 3)
*/
ret = read_scratchpad(sl, &info);
if (!ret) {
new_config_register[0] = th; /* Byte 2 */
new_config_register[1] = tl; /* Byte 3 */
new_config_register[2] = info.rom[4];/* Byte 4 */
} else {
dev_info(device,
"%s: error reading from the slave device %d\n",
__func__, ret);
goto free_m;
}
/* Write data in the device RAM */
if (!SLAVE_SPECIFIC_FUNC(sl)) {
dev_info(device,
"%s: Device not supported by the driver %d\n",
__func__, -ENODEV);
goto free_m;
}
ret = SLAVE_SPECIFIC_FUNC(sl)->write_data(sl, new_config_register);
if (ret)
dev_info(device,
"%s: error writing to the slave device %d\n",
__func__, ret);
free_m:
/* free allocated memory */
kfree(orig);
return size;
}
static ssize_t therm_bulk_read_store(struct device *device,
struct device_attribute *attr, const char *buf, size_t size)
{
struct w1_master *dev_master = dev_to_w1_master(device);
int ret = -EINVAL; /* Invalid argument */
if (size == sizeof(BULK_TRIGGER_CMD))
if (!strncmp(buf, BULK_TRIGGER_CMD,
sizeof(BULK_TRIGGER_CMD)-1))
ret = trigger_bulk_read(dev_master);
if (ret)
dev_info(device,
"%s: unable to trigger a bulk read on the bus. err=%d\n",
__func__, ret);
return size;
}
static ssize_t therm_bulk_read_show(struct device *device,
struct device_attribute *attr, char *buf)
{
struct w1_master *dev_master = dev_to_w1_master(device);
struct w1_slave *sl = NULL;
int ret = 0;
list_for_each_entry(sl, &dev_master->slist, w1_slave_entry) {
if (sl->family_data) {
if (bulk_read_support(sl)) {
if (SLAVE_CONVERT_TRIGGERED(sl) == -1) {
ret = -1;
goto show_result;
}
if (SLAVE_CONVERT_TRIGGERED(sl) == 1)
/* continue to check other slaves */
ret = 1;
}
}
}
show_result:
return sprintf(buf, "%d\n", ret);
}
static ssize_t conv_time_show(struct device *device,
struct device_attribute *attr, char *buf)
{
struct w1_slave *sl = dev_to_w1_slave(device);
if ((!sl->family_data) || (!SLAVE_SPECIFIC_FUNC(sl))) {
dev_info(device,
"%s: Device is not supported by the driver\n", __func__);
return 0; /* No device family */
}
return sprintf(buf, "%d\n", conversion_time(sl));
}
static ssize_t conv_time_store(struct device *device,
struct device_attribute *attr, const char *buf, size_t size)
{
int val, ret = 0;
struct w1_slave *sl = dev_to_w1_slave(device);
if (kstrtoint(buf, 10, &val)) /* converting user entry to int */
return -EINVAL;
if (check_family_data(sl))
return -ENODEV;
if (val != CONV_TIME_MEASURE) {
if (val >= CONV_TIME_DEFAULT)
SLAVE_CONV_TIME_OVERRIDE(sl) = val;
else
return -EINVAL;
} else {
int conv_time;
ret = conv_time_measure(sl, &conv_time);
if (ret)
return -EIO;
SLAVE_CONV_TIME_OVERRIDE(sl) = conv_time;
}
return size;
}
static ssize_t features_show(struct device *device,
struct device_attribute *attr, char *buf)
{
struct w1_slave *sl = dev_to_w1_slave(device);
if ((!sl->family_data) || (!SLAVE_SPECIFIC_FUNC(sl))) {
dev_info(device,
"%s: Device not supported by the driver\n", __func__);
return 0; /* No device family */
}
return sprintf(buf, "%u\n", SLAVE_FEATURES(sl));
}
static ssize_t features_store(struct device *device,
struct device_attribute *attr, const char *buf, size_t size)
{
int val, ret = 0;
bool strong_pullup;
struct w1_slave *sl = dev_to_w1_slave(device);
ret = kstrtouint(buf, 10, &val); /* converting user entry to int */
if (ret)
return -EINVAL; /* invalid number */
if ((!sl->family_data) || (!SLAVE_SPECIFIC_FUNC(sl))) {
dev_info(device, "%s: Device not supported by the driver\n", __func__);
return -ENODEV;
}
if ((val & W1_THERM_FEATURES_MASK) != val)
return -EINVAL;
SLAVE_FEATURES(sl) = val;
strong_pullup = (w1_strong_pullup == 2 ||
(!SLAVE_POWERMODE(sl) &&
w1_strong_pullup));
if (strong_pullup && SLAVE_FEATURES(sl) & W1_THERM_POLL_COMPLETION) {
dev_warn(&sl->dev,
"%s: W1_THERM_POLL_COMPLETION disabled in parasite power mode.\n",
__func__);
SLAVE_FEATURES(sl) &= ~W1_THERM_POLL_COMPLETION;
}
return size;
}
#if IS_REACHABLE(CONFIG_HWMON)
static int w1_read_temp(struct device *device, u32 attr, int channel,
long *val)
{
struct w1_slave *sl = dev_get_drvdata(device);
struct therm_info info;
int ret;
switch (attr) {
case hwmon_temp_input:
ret = convert_t(sl, &info);
if (ret)
return ret;
if (!info.verdict) {
ret = -EIO;
return ret;
}
*val = temperature_from_RAM(sl, info.rom);
ret = 0;
break;
default:
ret = -EOPNOTSUPP;
break;
}
return ret;
}
#endif
#define W1_42_CHAIN 0x99
#define W1_42_CHAIN_OFF 0x3C
#define W1_42_CHAIN_OFF_INV 0xC3
#define W1_42_CHAIN_ON 0x5A
#define W1_42_CHAIN_ON_INV 0xA5
#define W1_42_CHAIN_DONE 0x96
#define W1_42_CHAIN_DONE_INV 0x69
#define W1_42_COND_READ 0x0F
#define W1_42_SUCCESS_CONFIRM_BYTE 0xAA
#define W1_42_FINISHED_BYTE 0xFF
static ssize_t w1_seq_show(struct device *device,
struct device_attribute *attr, char *buf)
{
struct w1_slave *sl = dev_to_w1_slave(device);
ssize_t c = PAGE_SIZE;
int i;
u8 ack;
u64 rn;
struct w1_reg_num *reg_num;
int seq = 0;
mutex_lock(&sl->master->bus_mutex);
/* Place all devices in CHAIN state */
if (w1_reset_bus(sl->master))
goto error;
w1_write_8(sl->master, W1_SKIP_ROM);
w1_write_8(sl->master, W1_42_CHAIN);
w1_write_8(sl->master, W1_42_CHAIN_ON);
w1_write_8(sl->master, W1_42_CHAIN_ON_INV);
msleep(sl->master->pullup_duration);
/* check for acknowledgment */
ack = w1_read_8(sl->master);
if (ack != W1_42_SUCCESS_CONFIRM_BYTE)
goto error;
/* In case the bus fails to send 0xFF, limit */
for (i = 0; i <= 64; i++) {
if (w1_reset_bus(sl->master))
goto error;
w1_write_8(sl->master, W1_42_COND_READ);
w1_read_block(sl->master, (u8 *)&rn, 8);
reg_num = (struct w1_reg_num *) &rn;
if (reg_num->family == W1_42_FINISHED_BYTE)
break;
if (sl->reg_num.id == reg_num->id)
seq = i;
w1_write_8(sl->master, W1_42_CHAIN);
w1_write_8(sl->master, W1_42_CHAIN_DONE);
w1_write_8(sl->master, W1_42_CHAIN_DONE_INV);
w1_read_block(sl->master, &ack, sizeof(ack));
/* check for acknowledgment */
ack = w1_read_8(sl->master);
if (ack != W1_42_SUCCESS_CONFIRM_BYTE)
goto error;
}
/* Exit from CHAIN state */
if (w1_reset_bus(sl->master))
goto error;
w1_write_8(sl->master, W1_SKIP_ROM);
w1_write_8(sl->master, W1_42_CHAIN);
w1_write_8(sl->master, W1_42_CHAIN_OFF);
w1_write_8(sl->master, W1_42_CHAIN_OFF_INV);
/* check for acknowledgment */
ack = w1_read_8(sl->master);
if (ack != W1_42_SUCCESS_CONFIRM_BYTE)
goto error;
mutex_unlock(&sl->master->bus_mutex);
c -= snprintf(buf + PAGE_SIZE - c, c, "%d\n", seq);
return PAGE_SIZE - c;
error:
mutex_unlock(&sl->master->bus_mutex);
return -EIO;
}
static int __init w1_therm_init(void)
{
int err, i;
for (i = 0; i < ARRAY_SIZE(w1_therm_families); ++i) {
err = w1_register_family(w1_therm_families[i].f);
if (err)
w1_therm_families[i].broken = 1;
}
return 0;
}
static void __exit w1_therm_fini(void)
{
int i;
for (i = 0; i < ARRAY_SIZE(w1_therm_families); ++i)
if (!w1_therm_families[i].broken)
w1_unregister_family(w1_therm_families[i].f);
}
module_init(w1_therm_init);
module_exit(w1_therm_fini);
MODULE_AUTHOR("Evgeniy Polyakov <zbr@ioremap.net>");
MODULE_DESCRIPTION("Driver for 1-wire Dallas network protocol, temperature family.");
MODULE_LICENSE("GPL");
MODULE_ALIAS("w1-family-" __stringify(W1_THERM_DS18S20));
MODULE_ALIAS("w1-family-" __stringify(W1_THERM_DS1822));
MODULE_ALIAS("w1-family-" __stringify(W1_THERM_DS18B20));
MODULE_ALIAS("w1-family-" __stringify(W1_THERM_DS1825));
MODULE_ALIAS("w1-family-" __stringify(W1_THERM_DS28EA00));