/** * Broadcom Secondary Memory Interface driver * * Written by Luke Wren * Copyright (c) 2015, Raspberry Pi (Trading) Ltd. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The names of the above-listed copyright holders may not be used * to endorse or promote products derived from this software without * specific prior written permission. * * ALTERNATIVELY, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2, as published by the Free * Software Foundation. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define BCM2835_SMI_IMPLEMENTATION #include #define DRIVER_NAME "smi-bcm2835" #define N_PAGES_FROM_BYTES(n) ((n + PAGE_SIZE-1) / PAGE_SIZE) #define DMA_WRITE_TO_MEM true #define DMA_READ_FROM_MEM false struct bcm2835_smi_instance { struct device *dev; struct smi_settings settings; __iomem void *smi_regs_ptr; dma_addr_t smi_regs_busaddr; struct dma_chan *dma_chan; struct dma_slave_config dma_config; struct bcm2835_smi_bounce_info bounce; struct scatterlist buffer_sgl; struct clk *clk; /* Sometimes we are called into in an atomic context (e.g. by JFFS2 + MTD) so we can't use a mutex */ spinlock_t transaction_lock; }; /**************************************************************************** * * SMI peripheral setup * ***************************************************************************/ static inline void write_smi_reg(struct bcm2835_smi_instance *inst, u32 val, unsigned reg) { writel(val, inst->smi_regs_ptr + reg); } static inline u32 read_smi_reg(struct bcm2835_smi_instance *inst, unsigned reg) { return readl(inst->smi_regs_ptr + reg); } /* Token-paste macro for e.g SMIDSR_RSTROBE -> value of SMIDSR_RSTROBE_MASK */ #define _CONCAT(x, y) x##y #define CONCAT(x, y) _CONCAT(x, y) #define SET_BIT_FIELD(dest, field, bits) ((dest) = \ ((dest) & ~CONCAT(field, _MASK)) | (((bits) << CONCAT(field, _OFFS))& \ CONCAT(field, _MASK))) #define GET_BIT_FIELD(src, field) (((src) & \ CONCAT(field, _MASK)) >> CONCAT(field, _OFFS)) static void smi_dump_context_labelled(struct bcm2835_smi_instance *inst, const char *label) { dev_err(inst->dev, "SMI context dump: %s", label); dev_err(inst->dev, "SMICS: 0x%08x", read_smi_reg(inst, SMICS)); dev_err(inst->dev, "SMIL: 0x%08x", read_smi_reg(inst, SMIL)); dev_err(inst->dev, "SMIDSR: 0x%08x", read_smi_reg(inst, SMIDSR0)); dev_err(inst->dev, "SMIDSW: 0x%08x", read_smi_reg(inst, SMIDSW0)); dev_err(inst->dev, "SMIDC: 0x%08x", read_smi_reg(inst, SMIDC)); dev_err(inst->dev, "SMIFD: 0x%08x", read_smi_reg(inst, SMIFD)); dev_err(inst->dev, " "); } static inline void smi_dump_context(struct bcm2835_smi_instance *inst) { smi_dump_context_labelled(inst, ""); } static void smi_get_default_settings(struct bcm2835_smi_instance *inst) { struct smi_settings *settings = &inst->settings; settings->data_width = SMI_WIDTH_16BIT; settings->pack_data = true; settings->read_setup_time = 1; settings->read_hold_time = 1; settings->read_pace_time = 1; settings->read_strobe_time = 3; settings->write_setup_time = settings->read_setup_time; settings->write_hold_time = settings->read_hold_time; settings->write_pace_time = settings->read_pace_time; settings->write_strobe_time = settings->read_strobe_time; settings->dma_enable = true; settings->dma_passthrough_enable = false; settings->dma_read_thresh = 0x01; settings->dma_write_thresh = 0x3f; settings->dma_panic_read_thresh = 0x20; settings->dma_panic_write_thresh = 0x20; } void bcm2835_smi_set_regs_from_settings(struct bcm2835_smi_instance *inst) { struct smi_settings *settings = &inst->settings; int smidsr_temp = 0, smidsw_temp = 0, smics_temp, smidcs_temp, smidc_temp = 0; spin_lock(&inst->transaction_lock); /* temporarily disable the peripheral: */ smics_temp = read_smi_reg(inst, SMICS); write_smi_reg(inst, 0, SMICS); smidcs_temp = read_smi_reg(inst, SMIDCS); write_smi_reg(inst, 0, SMIDCS); if (settings->pack_data) smics_temp |= SMICS_PXLDAT; else smics_temp &= ~SMICS_PXLDAT; SET_BIT_FIELD(smidsr_temp, SMIDSR_RWIDTH, settings->data_width); SET_BIT_FIELD(smidsr_temp, SMIDSR_RSETUP, settings->read_setup_time); SET_BIT_FIELD(smidsr_temp, SMIDSR_RHOLD, settings->read_hold_time); SET_BIT_FIELD(smidsr_temp, SMIDSR_RPACE, settings->read_pace_time); SET_BIT_FIELD(smidsr_temp, SMIDSR_RSTROBE, settings->read_strobe_time); write_smi_reg(inst, smidsr_temp, SMIDSR0); SET_BIT_FIELD(smidsw_temp, SMIDSW_WWIDTH, settings->data_width); if (settings->data_width == SMI_WIDTH_8BIT) smidsw_temp |= SMIDSW_WSWAP; else smidsw_temp &= ~SMIDSW_WSWAP; SET_BIT_FIELD(smidsw_temp, SMIDSW_WSETUP, settings->write_setup_time); SET_BIT_FIELD(smidsw_temp, SMIDSW_WHOLD, settings->write_hold_time); SET_BIT_FIELD(smidsw_temp, SMIDSW_WPACE, settings->write_pace_time); SET_BIT_FIELD(smidsw_temp, SMIDSW_WSTROBE, settings->write_strobe_time); write_smi_reg(inst, smidsw_temp, SMIDSW0); SET_BIT_FIELD(smidc_temp, SMIDC_REQR, settings->dma_read_thresh); SET_BIT_FIELD(smidc_temp, SMIDC_REQW, settings->dma_write_thresh); SET_BIT_FIELD(smidc_temp, SMIDC_PANICR, settings->dma_panic_read_thresh); SET_BIT_FIELD(smidc_temp, SMIDC_PANICW, settings->dma_panic_write_thresh); if (settings->dma_passthrough_enable) { smidc_temp |= SMIDC_DMAP; smidsr_temp |= SMIDSR_RDREQ; write_smi_reg(inst, smidsr_temp, SMIDSR0); smidsw_temp |= SMIDSW_WDREQ; write_smi_reg(inst, smidsw_temp, SMIDSW0); } else smidc_temp &= ~SMIDC_DMAP; if (settings->dma_enable) smidc_temp |= SMIDC_DMAEN; else smidc_temp &= ~SMIDC_DMAEN; write_smi_reg(inst, smidc_temp, SMIDC); /* re-enable (if was previously enabled) */ write_smi_reg(inst, smics_temp, SMICS); write_smi_reg(inst, smidcs_temp, SMIDCS); spin_unlock(&inst->transaction_lock); } EXPORT_SYMBOL(bcm2835_smi_set_regs_from_settings); struct smi_settings *bcm2835_smi_get_settings_from_regs (struct bcm2835_smi_instance *inst) { struct smi_settings *settings = &inst->settings; int smidsr, smidsw, smidc; spin_lock(&inst->transaction_lock); smidsr = read_smi_reg(inst, SMIDSR0); smidsw = read_smi_reg(inst, SMIDSW0); smidc = read_smi_reg(inst, SMIDC); settings->pack_data = (read_smi_reg(inst, SMICS) & SMICS_PXLDAT) ? true : false; settings->data_width = GET_BIT_FIELD(smidsr, SMIDSR_RWIDTH); settings->read_setup_time = GET_BIT_FIELD(smidsr, SMIDSR_RSETUP); settings->read_hold_time = GET_BIT_FIELD(smidsr, SMIDSR_RHOLD); settings->read_pace_time = GET_BIT_FIELD(smidsr, SMIDSR_RPACE); settings->read_strobe_time = GET_BIT_FIELD(smidsr, SMIDSR_RSTROBE); settings->write_setup_time = GET_BIT_FIELD(smidsw, SMIDSW_WSETUP); settings->write_hold_time = GET_BIT_FIELD(smidsw, SMIDSW_WHOLD); settings->write_pace_time = GET_BIT_FIELD(smidsw, SMIDSW_WPACE); settings->write_strobe_time = GET_BIT_FIELD(smidsw, SMIDSW_WSTROBE); settings->dma_read_thresh = GET_BIT_FIELD(smidc, SMIDC_REQR); settings->dma_write_thresh = GET_BIT_FIELD(smidc, SMIDC_REQW); settings->dma_panic_read_thresh = GET_BIT_FIELD(smidc, SMIDC_PANICR); settings->dma_panic_write_thresh = GET_BIT_FIELD(smidc, SMIDC_PANICW); settings->dma_passthrough_enable = (smidc & SMIDC_DMAP) ? true : false; settings->dma_enable = (smidc & SMIDC_DMAEN) ? true : false; spin_unlock(&inst->transaction_lock); return settings; } EXPORT_SYMBOL(bcm2835_smi_get_settings_from_regs); static inline void smi_set_address(struct bcm2835_smi_instance *inst, unsigned int address) { int smia_temp = 0, smida_temp = 0; SET_BIT_FIELD(smia_temp, SMIA_ADDR, address); SET_BIT_FIELD(smida_temp, SMIDA_ADDR, address); /* Write to both address registers - user doesn't care whether we're doing programmed or direct transfers. */ write_smi_reg(inst, smia_temp, SMIA); write_smi_reg(inst, smida_temp, SMIDA); } static void smi_setup_regs(struct bcm2835_smi_instance *inst) { dev_dbg(inst->dev, "Initialising SMI registers..."); /* Disable the peripheral if already enabled */ write_smi_reg(inst, 0, SMICS); write_smi_reg(inst, 0, SMIDCS); smi_get_default_settings(inst); bcm2835_smi_set_regs_from_settings(inst); smi_set_address(inst, 0); write_smi_reg(inst, read_smi_reg(inst, SMICS) | SMICS_ENABLE, SMICS); write_smi_reg(inst, read_smi_reg(inst, SMIDCS) | SMIDCS_ENABLE, SMIDCS); } /**************************************************************************** * * Low-level SMI access functions * Other modules should use the exported higher-level functions e.g. * bcm2835_smi_write_buf() unless they have a good reason to use these * ***************************************************************************/ static inline uint32_t smi_read_single_word(struct bcm2835_smi_instance *inst) { int timeout = 0; write_smi_reg(inst, SMIDCS_ENABLE, SMIDCS); write_smi_reg(inst, SMIDCS_ENABLE | SMIDCS_START, SMIDCS); /* Make sure things happen in the right order...*/ mb(); while (!(read_smi_reg(inst, SMIDCS) & SMIDCS_DONE) && ++timeout < 10000) ; if (timeout < 10000) return read_smi_reg(inst, SMIDD); dev_err(inst->dev, "SMI direct read timed out (is the clock set up correctly?)"); return 0; } static inline void smi_write_single_word(struct bcm2835_smi_instance *inst, uint32_t data) { int timeout = 0; write_smi_reg(inst, SMIDCS_ENABLE | SMIDCS_WRITE, SMIDCS); write_smi_reg(inst, data, SMIDD); write_smi_reg(inst, SMIDCS_ENABLE | SMIDCS_WRITE | SMIDCS_START, SMIDCS); while (!(read_smi_reg(inst, SMIDCS) & SMIDCS_DONE) && ++timeout < 10000) ; if (timeout >= 10000) dev_err(inst->dev, "SMI direct write timed out (is the clock set up correctly?)"); } /* Initiates a programmed read into the read FIFO. It is up to the caller to * read data from the FIFO - either via paced DMA transfer, * or polling SMICS_RXD to check whether data is available. * SMICS_ACTIVE will go low upon completion. */ static void smi_init_programmed_read(struct bcm2835_smi_instance *inst, int num_transfers) { int smics_temp; /* Disable the peripheral: */ smics_temp = read_smi_reg(inst, SMICS) & ~(SMICS_ENABLE | SMICS_WRITE); write_smi_reg(inst, smics_temp, SMICS); while (read_smi_reg(inst, SMICS) & SMICS_ENABLE) ; /* Program the transfer count: */ write_smi_reg(inst, num_transfers, SMIL); /* re-enable and start: */ smics_temp |= SMICS_ENABLE; write_smi_reg(inst, smics_temp, SMICS); smics_temp |= SMICS_CLEAR; /* Just to be certain: */ mb(); while (read_smi_reg(inst, SMICS) & SMICS_ACTIVE) ; write_smi_reg(inst, smics_temp, SMICS); smics_temp |= SMICS_START; write_smi_reg(inst, smics_temp, SMICS); } /* Initiates a programmed write sequence, using data from the write FIFO. * It is up to the caller to initiate a DMA transfer before calling, * or use another method to keep the write FIFO topped up. * SMICS_ACTIVE will go low upon completion. */ static void smi_init_programmed_write(struct bcm2835_smi_instance *inst, int num_transfers) { int smics_temp; /* Disable the peripheral: */ smics_temp = read_smi_reg(inst, SMICS) & ~SMICS_ENABLE; write_smi_reg(inst, smics_temp, SMICS); while (read_smi_reg(inst, SMICS) & SMICS_ENABLE) ; /* Program the transfer count: */ write_smi_reg(inst, num_transfers, SMIL); /* setup, re-enable and start: */ smics_temp |= SMICS_WRITE | SMICS_ENABLE; write_smi_reg(inst, smics_temp, SMICS); smics_temp |= SMICS_START; write_smi_reg(inst, smics_temp, SMICS); } /* Initiate a read and then poll FIFO for data, reading out as it appears. */ static void smi_read_fifo(struct bcm2835_smi_instance *inst, uint32_t *dest, int n_bytes) { if (read_smi_reg(inst, SMICS) & SMICS_RXD) { smi_dump_context_labelled(inst, "WARNING: read FIFO not empty at start of read call."); while (read_smi_reg(inst, SMICS)) ; } /* Dispatch the read: */ if (inst->settings.data_width == SMI_WIDTH_8BIT) smi_init_programmed_read(inst, n_bytes); else if (inst->settings.data_width == SMI_WIDTH_16BIT) smi_init_programmed_read(inst, n_bytes / 2); else { dev_err(inst->dev, "Unsupported data width for read."); return; } /* Poll FIFO to keep it empty */ while (!(read_smi_reg(inst, SMICS) & SMICS_DONE)) if (read_smi_reg(inst, SMICS) & SMICS_RXD) *dest++ = read_smi_reg(inst, SMID); /* Ensure that the FIFO is emptied */ if (read_smi_reg(inst, SMICS) & SMICS_RXD) { int fifo_count; fifo_count = GET_BIT_FIELD(read_smi_reg(inst, SMIFD), SMIFD_FCNT); while (fifo_count--) *dest++ = read_smi_reg(inst, SMID); } if (!(read_smi_reg(inst, SMICS) & SMICS_DONE)) smi_dump_context_labelled(inst, "WARNING: transaction finished but done bit not set."); if (read_smi_reg(inst, SMICS) & SMICS_RXD) smi_dump_context_labelled(inst, "WARNING: read FIFO not empty at end of read call."); } /* Initiate a write, and then keep the FIFO topped up. */ static void smi_write_fifo(struct bcm2835_smi_instance *inst, uint32_t *src, int n_bytes) { int i, timeout = 0; /* Empty FIFOs if not already so */ if (!(read_smi_reg(inst, SMICS) & SMICS_TXE)) { smi_dump_context_labelled(inst, "WARNING: write fifo not empty at start of write call."); write_smi_reg(inst, read_smi_reg(inst, SMICS) | SMICS_CLEAR, SMICS); } /* Initiate the transfer */ if (inst->settings.data_width == SMI_WIDTH_8BIT) smi_init_programmed_write(inst, n_bytes); else if (inst->settings.data_width == SMI_WIDTH_16BIT) smi_init_programmed_write(inst, n_bytes / 2); else { dev_err(inst->dev, "Unsupported data width for write."); return; } /* Fill the FIFO: */ for (i = 0; i < (n_bytes - 1) / 4 + 1; ++i) { while (!(read_smi_reg(inst, SMICS) & SMICS_TXD)) ; write_smi_reg(inst, *src++, SMID); } /* Busy wait... */ while (!(read_smi_reg(inst, SMICS) & SMICS_DONE) && ++timeout < 1000000) ; if (timeout >= 1000000) smi_dump_context_labelled(inst, "Timed out on write operation!"); if (!(read_smi_reg(inst, SMICS) & SMICS_TXE)) smi_dump_context_labelled(inst, "WARNING: FIFO not empty at end of write operation."); } /**************************************************************************** * * SMI DMA operations * ***************************************************************************/ /* Disable SMI and put it into the correct direction before doing DMA setup. Stops spurious DREQs during setup. Peripheral is re-enabled by init_*() */ static void smi_disable(struct bcm2835_smi_instance *inst, enum dma_transfer_direction direction) { int smics_temp = read_smi_reg(inst, SMICS) & ~SMICS_ENABLE; if (direction == DMA_DEV_TO_MEM) smics_temp &= ~SMICS_WRITE; else smics_temp |= SMICS_WRITE; write_smi_reg(inst, smics_temp, SMICS); while (read_smi_reg(inst, SMICS) & SMICS_ACTIVE) ; } static struct scatterlist *smi_scatterlist_from_buffer( struct bcm2835_smi_instance *inst, dma_addr_t buf, size_t len, struct scatterlist *sg) { sg_init_table(sg, 1); sg_dma_address(sg) = buf; sg_dma_len(sg) = len; return sg; } static void smi_dma_callback_user_copy(void *param) { /* Notify the bottom half that a chunk is ready for user copy */ struct bcm2835_smi_instance *inst = (struct bcm2835_smi_instance *)param; up(&inst->bounce.callback_sem); } /* Creates a descriptor, assigns the given callback, and submits the descriptor to dmaengine. Does not block - can queue up multiple descriptors and then wait for them all to complete. sg_len is the number of control blocks, NOT the number of bytes. dir can be DMA_MEM_TO_DEV or DMA_DEV_TO_MEM. callback can be NULL - in this case it is not called. */ static inline struct dma_async_tx_descriptor *smi_dma_submit_sgl( struct bcm2835_smi_instance *inst, struct scatterlist *sgl, size_t sg_len, enum dma_transfer_direction dir, dma_async_tx_callback callback) { struct dma_async_tx_descriptor *desc; desc = dmaengine_prep_slave_sg(inst->dma_chan, sgl, sg_len, dir, DMA_PREP_INTERRUPT | DMA_CTRL_ACK | DMA_PREP_FENCE); if (!desc) { dev_err(inst->dev, "read_sgl: dma slave preparation failed!"); write_smi_reg(inst, read_smi_reg(inst, SMICS) & ~SMICS_ACTIVE, SMICS); while (read_smi_reg(inst, SMICS) & SMICS_ACTIVE) cpu_relax(); write_smi_reg(inst, read_smi_reg(inst, SMICS) | SMICS_ACTIVE, SMICS); return NULL; } desc->callback = callback; desc->callback_param = inst; if (dmaengine_submit(desc) < 0) return NULL; return desc; } /* NB this function blocks until the transfer is complete */ static void smi_dma_read_sgl(struct bcm2835_smi_instance *inst, struct scatterlist *sgl, size_t sg_len, size_t n_bytes) { struct dma_async_tx_descriptor *desc; /* Disable SMI and set to read before dispatching DMA - if SMI is in * write mode and TX fifo is empty, it will generate a DREQ which may * cause the read DMA to complete before the SMI read command is even * dispatched! We want to dispatch DMA before SMI read so that reading * is gapless, for logic analyser. */ smi_disable(inst, DMA_DEV_TO_MEM); desc = smi_dma_submit_sgl(inst, sgl, sg_len, DMA_DEV_TO_MEM, NULL); dma_async_issue_pending(inst->dma_chan); if (inst->settings.data_width == SMI_WIDTH_8BIT) smi_init_programmed_read(inst, n_bytes); else smi_init_programmed_read(inst, n_bytes / 2); if (dma_wait_for_async_tx(desc) == DMA_ERROR) smi_dump_context_labelled(inst, "DMA timeout!"); } static void smi_dma_write_sgl(struct bcm2835_smi_instance *inst, struct scatterlist *sgl, size_t sg_len, size_t n_bytes) { struct dma_async_tx_descriptor *desc; if (inst->settings.data_width == SMI_WIDTH_8BIT) smi_init_programmed_write(inst, n_bytes); else smi_init_programmed_write(inst, n_bytes / 2); desc = smi_dma_submit_sgl(inst, sgl, sg_len, DMA_MEM_TO_DEV, NULL); dma_async_issue_pending(inst->dma_chan); if (dma_wait_for_async_tx(desc) == DMA_ERROR) smi_dump_context_labelled(inst, "DMA timeout!"); else /* Wait for SMI to finish our writes */ while (!(read_smi_reg(inst, SMICS) & SMICS_DONE)) cpu_relax(); } ssize_t bcm2835_smi_user_dma( struct bcm2835_smi_instance *inst, enum dma_transfer_direction dma_dir, char __user *user_ptr, size_t count, struct bcm2835_smi_bounce_info **bounce) { int chunk_no = 0, chunk_size, count_left = count; struct scatterlist *sgl; void (*init_trans_func)(struct bcm2835_smi_instance *, int); spin_lock(&inst->transaction_lock); if (dma_dir == DMA_DEV_TO_MEM) init_trans_func = smi_init_programmed_read; else init_trans_func = smi_init_programmed_write; smi_disable(inst, dma_dir); sema_init(&inst->bounce.callback_sem, 0); if (bounce) *bounce = &inst->bounce; while (count_left) { chunk_size = count_left > DMA_BOUNCE_BUFFER_SIZE ? DMA_BOUNCE_BUFFER_SIZE : count_left; if (chunk_size == DMA_BOUNCE_BUFFER_SIZE) { sgl = &inst->bounce.sgl[chunk_no % DMA_BOUNCE_BUFFER_COUNT]; } else { sgl = smi_scatterlist_from_buffer( inst, inst->bounce.phys[ chunk_no % DMA_BOUNCE_BUFFER_COUNT], chunk_size, &inst->buffer_sgl); } if (!smi_dma_submit_sgl(inst, sgl, 1, dma_dir, smi_dma_callback_user_copy )) { dev_err(inst->dev, "sgl submit failed"); count = 0; goto out; } count_left -= chunk_size; chunk_no++; } dma_async_issue_pending(inst->dma_chan); if (inst->settings.data_width == SMI_WIDTH_8BIT) init_trans_func(inst, count); else if (inst->settings.data_width == SMI_WIDTH_16BIT) init_trans_func(inst, count / 2); out: spin_unlock(&inst->transaction_lock); return count; } EXPORT_SYMBOL(bcm2835_smi_user_dma); /**************************************************************************** * * High level buffer transfer functions - for use by other drivers * ***************************************************************************/ /* Buffer must be physically contiguous - i.e. kmalloc, not vmalloc! */ void bcm2835_smi_write_buf( struct bcm2835_smi_instance *inst, const void *buf, size_t n_bytes) { int odd_bytes = n_bytes & 0x3; n_bytes -= odd_bytes; spin_lock(&inst->transaction_lock); if (n_bytes > DMA_THRESHOLD_BYTES) { dma_addr_t phy_addr = dma_map_single( inst->dev, (void *)buf, n_bytes, DMA_TO_DEVICE); struct scatterlist *sgl = smi_scatterlist_from_buffer(inst, phy_addr, n_bytes, &inst->buffer_sgl); if (!sgl) { smi_dump_context_labelled(inst, "Error: could not create scatterlist for write!"); goto out; } smi_dma_write_sgl(inst, sgl, 1, n_bytes); dma_unmap_single (inst->dev, phy_addr, n_bytes, DMA_TO_DEVICE); } else if (n_bytes) { smi_write_fifo(inst, (uint32_t *) buf, n_bytes); } buf += n_bytes; if (inst->settings.data_width == SMI_WIDTH_8BIT) { while (odd_bytes--) smi_write_single_word(inst, *(uint8_t *) (buf++)); } else { while (odd_bytes >= 2) { smi_write_single_word(inst, *(uint16_t *)buf); buf += 2; odd_bytes -= 2; } if (odd_bytes) { /* Reading an odd number of bytes on a 16 bit bus is a user bug. It's kinder to fail early and tell them than to e.g. transparently give them the bottom byte of a 16 bit transfer. */ dev_err(inst->dev, "WARNING: odd number of bytes specified for wide transfer."); dev_err(inst->dev, "At least one byte dropped as a result."); dump_stack(); } } out: spin_unlock(&inst->transaction_lock); } EXPORT_SYMBOL(bcm2835_smi_write_buf); void bcm2835_smi_read_buf(struct bcm2835_smi_instance *inst, void *buf, size_t n_bytes) { /* SMI is inherently 32-bit, which causes surprising amounts of mess for bytes % 4 != 0. Easiest to avoid this mess altogether by handling remainder separately. */ int odd_bytes = n_bytes & 0x3; spin_lock(&inst->transaction_lock); n_bytes -= odd_bytes; if (n_bytes > DMA_THRESHOLD_BYTES) { dma_addr_t phy_addr = dma_map_single(inst->dev, buf, n_bytes, DMA_FROM_DEVICE); struct scatterlist *sgl = smi_scatterlist_from_buffer( inst, phy_addr, n_bytes, &inst->buffer_sgl); if (!sgl) { smi_dump_context_labelled(inst, "Error: could not create scatterlist for read!"); goto out; } smi_dma_read_sgl(inst, sgl, 1, n_bytes); dma_unmap_single(inst->dev, phy_addr, n_bytes, DMA_FROM_DEVICE); } else if (n_bytes) { smi_read_fifo(inst, (uint32_t *)buf, n_bytes); } buf += n_bytes; if (inst->settings.data_width == SMI_WIDTH_8BIT) { while (odd_bytes--) *((uint8_t *) (buf++)) = smi_read_single_word(inst); } else { while (odd_bytes >= 2) { *(uint16_t *) buf = smi_read_single_word(inst); buf += 2; odd_bytes -= 2; } if (odd_bytes) { dev_err(inst->dev, "WARNING: odd number of bytes specified for wide transfer."); dev_err(inst->dev, "At least one byte dropped as a result."); dump_stack(); } } out: spin_unlock(&inst->transaction_lock); } EXPORT_SYMBOL(bcm2835_smi_read_buf); void bcm2835_smi_set_address(struct bcm2835_smi_instance *inst, unsigned int address) { spin_lock(&inst->transaction_lock); smi_set_address(inst, address); spin_unlock(&inst->transaction_lock); } EXPORT_SYMBOL(bcm2835_smi_set_address); struct bcm2835_smi_instance *bcm2835_smi_get(struct device_node *node) { struct platform_device *pdev; if (!node) return NULL; pdev = of_find_device_by_node(node); if (!pdev) return NULL; return platform_get_drvdata(pdev); } EXPORT_SYMBOL(bcm2835_smi_get); /**************************************************************************** * * bcm2835_smi_probe - called when the driver is loaded. * ***************************************************************************/ static int bcm2835_smi_dma_setup(struct bcm2835_smi_instance *inst) { int i, rv = 0; inst->dma_chan = dma_request_slave_channel(inst->dev, "rx-tx"); inst->dma_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; inst->dma_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; inst->dma_config.src_addr = inst->smi_regs_busaddr + SMID; inst->dma_config.dst_addr = inst->dma_config.src_addr; /* Direction unimportant - always overridden by prep_slave_sg */ inst->dma_config.direction = DMA_DEV_TO_MEM; dmaengine_slave_config(inst->dma_chan, &inst->dma_config); /* Alloc and map bounce buffers */ for (i = 0; i < DMA_BOUNCE_BUFFER_COUNT; ++i) { inst->bounce.buffer[i] = dmam_alloc_coherent(inst->dev, DMA_BOUNCE_BUFFER_SIZE, &inst->bounce.phys[i], GFP_KERNEL); if (!inst->bounce.buffer[i]) { dev_err(inst->dev, "Could not allocate buffer!"); rv = -ENOMEM; break; } smi_scatterlist_from_buffer( inst, inst->bounce.phys[i], DMA_BOUNCE_BUFFER_SIZE, &inst->bounce.sgl[i] ); } return rv; } static int bcm2835_smi_probe(struct platform_device *pdev) { int err; struct device *dev = &pdev->dev; struct device_node *node = dev->of_node; struct resource *ioresource; struct bcm2835_smi_instance *inst; const __be32 *addr; /* We require device tree support */ if (!node) return -EINVAL; /* Allocate buffers and instance data */ inst = devm_kzalloc(dev, sizeof(struct bcm2835_smi_instance), GFP_KERNEL); if (!inst) return -ENOMEM; inst->dev = dev; spin_lock_init(&inst->transaction_lock); ioresource = platform_get_resource(pdev, IORESOURCE_MEM, 0); inst->smi_regs_ptr = devm_ioremap_resource(dev, ioresource); if (IS_ERR(inst->smi_regs_ptr)) { err = PTR_ERR(inst->smi_regs_ptr); goto err; } addr = of_get_address(node, 0, NULL, NULL); inst->smi_regs_busaddr = be32_to_cpu(*addr); err = bcm2835_smi_dma_setup(inst); if (err) goto err; /* request clock */ inst->clk = devm_clk_get(dev, NULL); if (!inst->clk) goto err; clk_prepare_enable(inst->clk); /* Finally, do peripheral setup */ smi_setup_regs(inst); platform_set_drvdata(pdev, inst); dev_info(inst->dev, "initialised"); return 0; err: kfree(inst); return err; } /**************************************************************************** * * bcm2835_smi_remove - called when the driver is unloaded. * ***************************************************************************/ static int bcm2835_smi_remove(struct platform_device *pdev) { struct bcm2835_smi_instance *inst = platform_get_drvdata(pdev); struct device *dev = inst->dev; dmaengine_terminate_all(inst->dma_chan); dma_release_channel(inst->dma_chan); clk_disable_unprepare(inst->clk); dev_info(dev, "SMI device removed - OK"); return 0; } /**************************************************************************** * * Register the driver with device tree * ***************************************************************************/ static const struct of_device_id bcm2835_smi_of_match[] = { {.compatible = "brcm,bcm2835-smi",}, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, bcm2835_smi_of_match); static struct platform_driver bcm2835_smi_driver = { .probe = bcm2835_smi_probe, .remove = bcm2835_smi_remove, .driver = { .name = DRIVER_NAME, .owner = THIS_MODULE, .of_match_table = bcm2835_smi_of_match, }, }; module_platform_driver(bcm2835_smi_driver); MODULE_ALIAS("platform:smi-bcm2835"); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Device driver for BCM2835's secondary memory interface"); MODULE_AUTHOR("Luke Wren ");