3
0
mirror of https://github.com/Qortal/Brooklyn.git synced 2025-02-11 17:55:54 +00:00

Update HID, DRP, GPIO and kernel process accounting

This commit is contained in:
Scare Crowe 2021-07-13 00:01:19 +05:00
parent 044cfc9a3a
commit 8e6463f821
11277 changed files with 773755 additions and 177501 deletions

561
.clang-format Normal file
View File

@ -0,0 +1,561 @@
# SPDX-License-Identifier: GPL-2.0
#
# clang-format configuration file. Intended for clang-format >= 4.
#
# For more information, see:
#
# Documentation/process/clang-format.rst
# https://clang.llvm.org/docs/ClangFormat.html
# https://clang.llvm.org/docs/ClangFormatStyleOptions.html
#
---
AccessModifierOffset: -4
AlignAfterOpenBracket: Align
AlignConsecutiveAssignments: false
AlignConsecutiveDeclarations: false
#AlignEscapedNewlines: Left # Unknown to clang-format-4.0
AlignOperands: true
AlignTrailingComments: false
AllowAllParametersOfDeclarationOnNextLine: false
AllowShortBlocksOnASingleLine: false
AllowShortCaseLabelsOnASingleLine: false
AllowShortFunctionsOnASingleLine: None
AllowShortIfStatementsOnASingleLine: false
AllowShortLoopsOnASingleLine: false
AlwaysBreakAfterDefinitionReturnType: None
AlwaysBreakAfterReturnType: None
AlwaysBreakBeforeMultilineStrings: false
AlwaysBreakTemplateDeclarations: false
BinPackArguments: true
BinPackParameters: true
BraceWrapping:
AfterClass: false
AfterControlStatement: false
AfterEnum: false
AfterFunction: true
AfterNamespace: true
AfterObjCDeclaration: false
AfterStruct: false
AfterUnion: false
#AfterExternBlock: false # Unknown to clang-format-5.0
BeforeCatch: false
BeforeElse: false
IndentBraces: false
#SplitEmptyFunction: true # Unknown to clang-format-4.0
#SplitEmptyRecord: true # Unknown to clang-format-4.0
#SplitEmptyNamespace: true # Unknown to clang-format-4.0
BreakBeforeBinaryOperators: None
BreakBeforeBraces: Custom
#BreakBeforeInheritanceComma: false # Unknown to clang-format-4.0
BreakBeforeTernaryOperators: false
BreakConstructorInitializersBeforeComma: false
#BreakConstructorInitializers: BeforeComma # Unknown to clang-format-4.0
BreakAfterJavaFieldAnnotations: false
BreakStringLiterals: false
ColumnLimit: 80
CommentPragmas: '^ IWYU pragma:'
#CompactNamespaces: false # Unknown to clang-format-4.0
ConstructorInitializerAllOnOneLineOrOnePerLine: false
ConstructorInitializerIndentWidth: 8
ContinuationIndentWidth: 8
Cpp11BracedListStyle: false
DerivePointerAlignment: false
DisableFormat: false
ExperimentalAutoDetectBinPacking: false
#FixNamespaceComments: false # Unknown to clang-format-4.0
# Taken from:
# git grep -h '^#define [^[:space:]]*for_each[^[:space:]]*(' include/ \
# | sed "s,^#define \([^[:space:]]*for_each[^[:space:]]*\)(.*$, - '\1'," \
# | sort | uniq
ForEachMacros:
- 'apei_estatus_for_each_section'
- 'ata_for_each_dev'
- 'ata_for_each_link'
- '__ata_qc_for_each'
- 'ata_qc_for_each'
- 'ata_qc_for_each_raw'
- 'ata_qc_for_each_with_internal'
- 'ax25_for_each'
- 'ax25_uid_for_each'
- '__bio_for_each_bvec'
- 'bio_for_each_bvec'
- 'bio_for_each_bvec_all'
- 'bio_for_each_integrity_vec'
- '__bio_for_each_segment'
- 'bio_for_each_segment'
- 'bio_for_each_segment_all'
- 'bio_list_for_each'
- 'bip_for_each_vec'
- 'bitmap_for_each_clear_region'
- 'bitmap_for_each_set_region'
- 'blkg_for_each_descendant_post'
- 'blkg_for_each_descendant_pre'
- 'blk_queue_for_each_rl'
- 'bond_for_each_slave'
- 'bond_for_each_slave_rcu'
- 'bpf_for_each_spilled_reg'
- 'btree_for_each_safe128'
- 'btree_for_each_safe32'
- 'btree_for_each_safe64'
- 'btree_for_each_safel'
- 'card_for_each_dev'
- 'cgroup_taskset_for_each'
- 'cgroup_taskset_for_each_leader'
- 'cpufreq_for_each_entry'
- 'cpufreq_for_each_entry_idx'
- 'cpufreq_for_each_valid_entry'
- 'cpufreq_for_each_valid_entry_idx'
- 'css_for_each_child'
- 'css_for_each_descendant_post'
- 'css_for_each_descendant_pre'
- 'device_for_each_child_node'
- 'displayid_iter_for_each'
- 'dma_fence_chain_for_each'
- 'do_for_each_ftrace_op'
- 'drm_atomic_crtc_for_each_plane'
- 'drm_atomic_crtc_state_for_each_plane'
- 'drm_atomic_crtc_state_for_each_plane_state'
- 'drm_atomic_for_each_plane_damage'
- 'drm_client_for_each_connector_iter'
- 'drm_client_for_each_modeset'
- 'drm_connector_for_each_possible_encoder'
- 'drm_for_each_bridge_in_chain'
- 'drm_for_each_connector_iter'
- 'drm_for_each_crtc'
- 'drm_for_each_crtc_reverse'
- 'drm_for_each_encoder'
- 'drm_for_each_encoder_mask'
- 'drm_for_each_fb'
- 'drm_for_each_legacy_plane'
- 'drm_for_each_plane'
- 'drm_for_each_plane_mask'
- 'drm_for_each_privobj'
- 'drm_mm_for_each_hole'
- 'drm_mm_for_each_node'
- 'drm_mm_for_each_node_in_range'
- 'drm_mm_for_each_node_safe'
- 'flow_action_for_each'
- 'for_each_acpi_dev_match'
- 'for_each_active_dev_scope'
- 'for_each_active_drhd_unit'
- 'for_each_active_iommu'
- 'for_each_aggr_pgid'
- 'for_each_available_child_of_node'
- 'for_each_bio'
- 'for_each_board_func_rsrc'
- 'for_each_bvec'
- 'for_each_card_auxs'
- 'for_each_card_auxs_safe'
- 'for_each_card_components'
- 'for_each_card_dapms'
- 'for_each_card_pre_auxs'
- 'for_each_card_prelinks'
- 'for_each_card_rtds'
- 'for_each_card_rtds_safe'
- 'for_each_card_widgets'
- 'for_each_card_widgets_safe'
- 'for_each_cgroup_storage_type'
- 'for_each_child_of_node'
- 'for_each_clear_bit'
- 'for_each_clear_bit_from'
- 'for_each_cmsghdr'
- 'for_each_compatible_node'
- 'for_each_component_dais'
- 'for_each_component_dais_safe'
- 'for_each_comp_order'
- 'for_each_console'
- 'for_each_cpu'
- 'for_each_cpu_and'
- 'for_each_cpu_not'
- 'for_each_cpu_wrap'
- 'for_each_dapm_widgets'
- 'for_each_dev_addr'
- 'for_each_dev_scope'
- 'for_each_dma_cap_mask'
- 'for_each_dpcm_be'
- 'for_each_dpcm_be_rollback'
- 'for_each_dpcm_be_safe'
- 'for_each_dpcm_fe'
- 'for_each_drhd_unit'
- 'for_each_dss_dev'
- 'for_each_dtpm_table'
- 'for_each_efi_memory_desc'
- 'for_each_efi_memory_desc_in_map'
- 'for_each_element'
- 'for_each_element_extid'
- 'for_each_element_id'
- 'for_each_endpoint_of_node'
- 'for_each_evictable_lru'
- 'for_each_fib6_node_rt_rcu'
- 'for_each_fib6_walker_rt'
- 'for_each_free_mem_pfn_range_in_zone'
- 'for_each_free_mem_pfn_range_in_zone_from'
- 'for_each_free_mem_range'
- 'for_each_free_mem_range_reverse'
- 'for_each_func_rsrc'
- 'for_each_hstate'
- 'for_each_if'
- 'for_each_iommu'
- 'for_each_ip_tunnel_rcu'
- 'for_each_irq_nr'
- 'for_each_link_codecs'
- 'for_each_link_cpus'
- 'for_each_link_platforms'
- 'for_each_lru'
- 'for_each_matching_node'
- 'for_each_matching_node_and_match'
- 'for_each_member'
- 'for_each_memcg_cache_index'
- 'for_each_mem_pfn_range'
- '__for_each_mem_range'
- 'for_each_mem_range'
- '__for_each_mem_range_rev'
- 'for_each_mem_range_rev'
- 'for_each_mem_region'
- 'for_each_migratetype_order'
- 'for_each_msi_entry'
- 'for_each_msi_entry_safe'
- 'for_each_msi_vector'
- 'for_each_net'
- 'for_each_net_continue_reverse'
- 'for_each_netdev'
- 'for_each_netdev_continue'
- 'for_each_netdev_continue_rcu'
- 'for_each_netdev_continue_reverse'
- 'for_each_netdev_feature'
- 'for_each_netdev_in_bond_rcu'
- 'for_each_netdev_rcu'
- 'for_each_netdev_reverse'
- 'for_each_netdev_safe'
- 'for_each_net_rcu'
- 'for_each_new_connector_in_state'
- 'for_each_new_crtc_in_state'
- 'for_each_new_mst_mgr_in_state'
- 'for_each_new_plane_in_state'
- 'for_each_new_private_obj_in_state'
- 'for_each_node'
- 'for_each_node_by_name'
- 'for_each_node_by_type'
- 'for_each_node_mask'
- 'for_each_node_state'
- 'for_each_node_with_cpus'
- 'for_each_node_with_property'
- 'for_each_nonreserved_multicast_dest_pgid'
- 'for_each_of_allnodes'
- 'for_each_of_allnodes_from'
- 'for_each_of_cpu_node'
- 'for_each_of_pci_range'
- 'for_each_old_connector_in_state'
- 'for_each_old_crtc_in_state'
- 'for_each_old_mst_mgr_in_state'
- 'for_each_oldnew_connector_in_state'
- 'for_each_oldnew_crtc_in_state'
- 'for_each_oldnew_mst_mgr_in_state'
- 'for_each_oldnew_plane_in_state'
- 'for_each_oldnew_plane_in_state_reverse'
- 'for_each_oldnew_private_obj_in_state'
- 'for_each_old_plane_in_state'
- 'for_each_old_private_obj_in_state'
- 'for_each_online_cpu'
- 'for_each_online_node'
- 'for_each_online_pgdat'
- 'for_each_pci_bridge'
- 'for_each_pci_dev'
- 'for_each_pci_msi_entry'
- 'for_each_pcm_streams'
- 'for_each_physmem_range'
- 'for_each_populated_zone'
- 'for_each_possible_cpu'
- 'for_each_present_cpu'
- 'for_each_prime_number'
- 'for_each_prime_number_from'
- 'for_each_process'
- 'for_each_process_thread'
- 'for_each_prop_codec_conf'
- 'for_each_prop_dai_codec'
- 'for_each_prop_dai_cpu'
- 'for_each_prop_dlc_codecs'
- 'for_each_prop_dlc_cpus'
- 'for_each_prop_dlc_platforms'
- 'for_each_property_of_node'
- 'for_each_registered_fb'
- 'for_each_requested_gpio'
- 'for_each_requested_gpio_in_range'
- 'for_each_reserved_mem_range'
- 'for_each_reserved_mem_region'
- 'for_each_rtd_codec_dais'
- 'for_each_rtd_components'
- 'for_each_rtd_cpu_dais'
- 'for_each_rtd_dais'
- 'for_each_set_bit'
- 'for_each_set_bit_from'
- 'for_each_set_clump8'
- 'for_each_sg'
- 'for_each_sg_dma_page'
- 'for_each_sg_page'
- 'for_each_sgtable_dma_page'
- 'for_each_sgtable_dma_sg'
- 'for_each_sgtable_page'
- 'for_each_sgtable_sg'
- 'for_each_sibling_event'
- 'for_each_subelement'
- 'for_each_subelement_extid'
- 'for_each_subelement_id'
- '__for_each_thread'
- 'for_each_thread'
- 'for_each_unicast_dest_pgid'
- 'for_each_vsi'
- 'for_each_wakeup_source'
- 'for_each_zone'
- 'for_each_zone_zonelist'
- 'for_each_zone_zonelist_nodemask'
- 'fwnode_for_each_available_child_node'
- 'fwnode_for_each_child_node'
- 'fwnode_graph_for_each_endpoint'
- 'gadget_for_each_ep'
- 'genradix_for_each'
- 'genradix_for_each_from'
- 'hash_for_each'
- 'hash_for_each_possible'
- 'hash_for_each_possible_rcu'
- 'hash_for_each_possible_rcu_notrace'
- 'hash_for_each_possible_safe'
- 'hash_for_each_rcu'
- 'hash_for_each_safe'
- 'hctx_for_each_ctx'
- 'hlist_bl_for_each_entry'
- 'hlist_bl_for_each_entry_rcu'
- 'hlist_bl_for_each_entry_safe'
- 'hlist_for_each'
- 'hlist_for_each_entry'
- 'hlist_for_each_entry_continue'
- 'hlist_for_each_entry_continue_rcu'
- 'hlist_for_each_entry_continue_rcu_bh'
- 'hlist_for_each_entry_from'
- 'hlist_for_each_entry_from_rcu'
- 'hlist_for_each_entry_rcu'
- 'hlist_for_each_entry_rcu_bh'
- 'hlist_for_each_entry_rcu_notrace'
- 'hlist_for_each_entry_safe'
- 'hlist_for_each_entry_srcu'
- '__hlist_for_each_rcu'
- 'hlist_for_each_safe'
- 'hlist_nulls_for_each_entry'
- 'hlist_nulls_for_each_entry_from'
- 'hlist_nulls_for_each_entry_rcu'
- 'hlist_nulls_for_each_entry_safe'
- 'i3c_bus_for_each_i2cdev'
- 'i3c_bus_for_each_i3cdev'
- 'ide_host_for_each_port'
- 'ide_port_for_each_dev'
- 'ide_port_for_each_present_dev'
- 'idr_for_each_entry'
- 'idr_for_each_entry_continue'
- 'idr_for_each_entry_continue_ul'
- 'idr_for_each_entry_ul'
- 'in_dev_for_each_ifa_rcu'
- 'in_dev_for_each_ifa_rtnl'
- 'inet_bind_bucket_for_each'
- 'inet_lhash2_for_each_icsk_rcu'
- 'key_for_each'
- 'key_for_each_safe'
- 'klp_for_each_func'
- 'klp_for_each_func_safe'
- 'klp_for_each_func_static'
- 'klp_for_each_object'
- 'klp_for_each_object_safe'
- 'klp_for_each_object_static'
- 'kunit_suite_for_each_test_case'
- 'kvm_for_each_memslot'
- 'kvm_for_each_vcpu'
- 'list_for_each'
- 'list_for_each_codec'
- 'list_for_each_codec_safe'
- 'list_for_each_continue'
- 'list_for_each_entry'
- 'list_for_each_entry_continue'
- 'list_for_each_entry_continue_rcu'
- 'list_for_each_entry_continue_reverse'
- 'list_for_each_entry_from'
- 'list_for_each_entry_from_rcu'
- 'list_for_each_entry_from_reverse'
- 'list_for_each_entry_lockless'
- 'list_for_each_entry_rcu'
- 'list_for_each_entry_reverse'
- 'list_for_each_entry_safe'
- 'list_for_each_entry_safe_continue'
- 'list_for_each_entry_safe_from'
- 'list_for_each_entry_safe_reverse'
- 'list_for_each_entry_srcu'
- 'list_for_each_prev'
- 'list_for_each_prev_safe'
- 'list_for_each_safe'
- 'llist_for_each'
- 'llist_for_each_entry'
- 'llist_for_each_entry_safe'
- 'llist_for_each_safe'
- 'mci_for_each_dimm'
- 'media_device_for_each_entity'
- 'media_device_for_each_intf'
- 'media_device_for_each_link'
- 'media_device_for_each_pad'
- 'nanddev_io_for_each_page'
- 'netdev_for_each_lower_dev'
- 'netdev_for_each_lower_private'
- 'netdev_for_each_lower_private_rcu'
- 'netdev_for_each_mc_addr'
- 'netdev_for_each_uc_addr'
- 'netdev_for_each_upper_dev_rcu'
- 'netdev_hw_addr_list_for_each'
- 'nft_rule_for_each_expr'
- 'nla_for_each_attr'
- 'nla_for_each_nested'
- 'nlmsg_for_each_attr'
- 'nlmsg_for_each_msg'
- 'nr_neigh_for_each'
- 'nr_neigh_for_each_safe'
- 'nr_node_for_each'
- 'nr_node_for_each_safe'
- 'of_for_each_phandle'
- 'of_property_for_each_string'
- 'of_property_for_each_u32'
- 'pci_bus_for_each_resource'
- 'pcl_for_each_chunk'
- 'pcl_for_each_segment'
- 'pcm_for_each_format'
- 'ping_portaddr_for_each_entry'
- 'plist_for_each'
- 'plist_for_each_continue'
- 'plist_for_each_entry'
- 'plist_for_each_entry_continue'
- 'plist_for_each_entry_safe'
- 'plist_for_each_safe'
- 'pnp_for_each_card'
- 'pnp_for_each_dev'
- 'protocol_for_each_card'
- 'protocol_for_each_dev'
- 'queue_for_each_hw_ctx'
- 'radix_tree_for_each_slot'
- 'radix_tree_for_each_tagged'
- 'rb_for_each'
- 'rbtree_postorder_for_each_entry_safe'
- 'rdma_for_each_block'
- 'rdma_for_each_port'
- 'rdma_umem_for_each_dma_block'
- 'resource_list_for_each_entry'
- 'resource_list_for_each_entry_safe'
- 'rhl_for_each_entry_rcu'
- 'rhl_for_each_rcu'
- 'rht_for_each'
- 'rht_for_each_entry'
- 'rht_for_each_entry_from'
- 'rht_for_each_entry_rcu'
- 'rht_for_each_entry_rcu_from'
- 'rht_for_each_entry_safe'
- 'rht_for_each_from'
- 'rht_for_each_rcu'
- 'rht_for_each_rcu_from'
- '__rq_for_each_bio'
- 'rq_for_each_bvec'
- 'rq_for_each_segment'
- 'scsi_for_each_prot_sg'
- 'scsi_for_each_sg'
- 'sctp_for_each_hentry'
- 'sctp_skb_for_each'
- 'shdma_for_each_chan'
- '__shost_for_each_device'
- 'shost_for_each_device'
- 'sk_for_each'
- 'sk_for_each_bound'
- 'sk_for_each_entry_offset_rcu'
- 'sk_for_each_from'
- 'sk_for_each_rcu'
- 'sk_for_each_safe'
- 'sk_nulls_for_each'
- 'sk_nulls_for_each_from'
- 'sk_nulls_for_each_rcu'
- 'snd_array_for_each'
- 'snd_pcm_group_for_each_entry'
- 'snd_soc_dapm_widget_for_each_path'
- 'snd_soc_dapm_widget_for_each_path_safe'
- 'snd_soc_dapm_widget_for_each_sink_path'
- 'snd_soc_dapm_widget_for_each_source_path'
- 'tb_property_for_each'
- 'tcf_exts_for_each_action'
- 'udp_portaddr_for_each_entry'
- 'udp_portaddr_for_each_entry_rcu'
- 'usb_hub_for_each_child'
- 'v4l2_device_for_each_subdev'
- 'v4l2_m2m_for_each_dst_buf'
- 'v4l2_m2m_for_each_dst_buf_safe'
- 'v4l2_m2m_for_each_src_buf'
- 'v4l2_m2m_for_each_src_buf_safe'
- 'virtio_device_for_each_vq'
- 'while_for_each_ftrace_op'
- 'xa_for_each'
- 'xa_for_each_marked'
- 'xa_for_each_range'
- 'xa_for_each_start'
- 'xas_for_each'
- 'xas_for_each_conflict'
- 'xas_for_each_marked'
- 'xbc_array_for_each_value'
- 'xbc_for_each_key_value'
- 'xbc_node_for_each_array_value'
- 'xbc_node_for_each_child'
- 'xbc_node_for_each_key_value'
- 'zorro_for_each_dev'
#IncludeBlocks: Preserve # Unknown to clang-format-5.0
IncludeCategories:
- Regex: '.*'
Priority: 1
IncludeIsMainRegex: '(Test)?$'
IndentCaseLabels: false
#IndentPPDirectives: None # Unknown to clang-format-5.0
IndentWidth: 8
IndentWrappedFunctionNames: false
JavaScriptQuotes: Leave
JavaScriptWrapImports: true
KeepEmptyLinesAtTheStartOfBlocks: false
MacroBlockBegin: ''
MacroBlockEnd: ''
MaxEmptyLinesToKeep: 1
NamespaceIndentation: None
#ObjCBinPackProtocolList: Auto # Unknown to clang-format-5.0
ObjCBlockIndentWidth: 8
ObjCSpaceAfterProperty: true
ObjCSpaceBeforeProtocolList: true
# Taken from git's rules
#PenaltyBreakAssignment: 10 # Unknown to clang-format-4.0
PenaltyBreakBeforeFirstCallParameter: 30
PenaltyBreakComment: 10
PenaltyBreakFirstLessLess: 0
PenaltyBreakString: 10
PenaltyExcessCharacter: 100
PenaltyReturnTypeOnItsOwnLine: 60
PointerAlignment: Right
ReflowComments: false
SortIncludes: false
#SortUsingDeclarations: false # Unknown to clang-format-4.0
SpaceAfterCStyleCast: false
SpaceAfterTemplateKeyword: true
SpaceBeforeAssignmentOperators: true
#SpaceBeforeCtorInitializerColon: true # Unknown to clang-format-5.0
#SpaceBeforeInheritanceColon: true # Unknown to clang-format-5.0
SpaceBeforeParens: ControlStatements
#SpaceBeforeRangeBasedForLoopColon: true # Unknown to clang-format-5.0
SpaceInEmptyParentheses: false
SpacesBeforeTrailingComments: 1
SpacesInAngles: false
SpacesInContainerLiterals: false
SpacesInCStyleCastParentheses: false
SpacesInParentheses: false
SpacesInSquareBrackets: false
Standard: Cpp03
TabWidth: 8
UseTab: Always
...

3
.cocciconfig Normal file
View File

@ -0,0 +1,3 @@
[spatch]
options = --timeout 200
options = --use-gitgrep

View File

@ -1,7 +1,7 @@
What: /sys/class/dax/
Date: May, 2016
KernelVersion: v4.7
Contact: linux-nvdimm@lists.01.org
Contact: nvdimm@lists.linux.dev
Description: Device DAX is the device-centric analogue of Filesystem
DAX (CONFIG_FS_DAX). It allows memory ranges to be
allocated and mapped without need of an intervening file

View File

@ -1,4 +1,4 @@
This ABI is renamed and moved to a new location /sys/kernel/fadump/registered.¬
This ABI is renamed and moved to a new location /sys/kernel/fadump/registered.
What: /sys/kernel/fadump_registered
Date: Feb 2012

View File

@ -1,4 +1,4 @@
This ABI is renamed and moved to a new location /sys/kernel/fadump/release_mem.¬
This ABI is renamed and moved to a new location /sys/kernel/fadump/release_mem.
What: /sys/kernel/fadump_release_mem
Date: Feb 2012

View File

@ -1,7 +1,7 @@
What: /sys/bus/nd/devices/regionX/nfit/ecc_unit_size
Date: Aug, 2017
KernelVersion: v4.14 (Removed v4.18)
Contact: linux-nvdimm@lists.01.org
Contact: nvdimm@lists.linux.dev
Description:
(RO) Size of a write request to a DIMM that will not incur a
read-modify-write cycle at the memory controller.

View File

@ -0,0 +1,27 @@
What: Audit Login UID
Date: 2005-02-01
KernelVersion: 2.6.11-rc2 1e2d1492e178 ("[PATCH] audit: handle loginuid through proc")
Contact: linux-audit@redhat.com
Users: audit and login applications
Description:
The /proc/$pid/loginuid pseudofile is written to set and
read to get the audit login UID of process $pid as a
decimal unsigned int (%u, u32). If it is unset,
permissions are not needed to set it. The accessor must
have CAP_AUDIT_CONTROL in the initial user namespace to
write it if it has been set. It cannot be written again
if AUDIT_FEATURE_LOGINUID_IMMUTABLE is enabled. It
cannot be unset if AUDIT_FEATURE_ONLY_UNSET_LOGINUID is
enabled.
What: Audit Login Session ID
Date: 2008-03-13
KernelVersion: 2.6.25-rc7 1e0bd7550ea9 ("[PATCH] export sessionid alongside the loginuid in procfs")
Contact: linux-audit@redhat.com
Users: audit and login applications
Description:
The /proc/$pid/sessionid pseudofile is read to get the
audit login session ID of process $pid as a decimal
unsigned int (%u, u32). It is set automatically,
serially assigned with each new login.

View File

@ -82,6 +82,24 @@ Description: Allows the root user to read or write 64 bit data directly
If the IOMMU is disabled, it also allows the root user to read
or write from the host a device VA of a host mapped memory
What: /sys/kernel/debug/habanalabs/hl<n>/data_dma
Date: Apr 2021
KernelVersion: 5.13
Contact: ogabbay@kernel.org
Description: Allows the root user to read from the device's internal
memory (DRAM/SRAM) through a DMA engine.
This property is a binary blob that contains the result of the
DMA transfer.
This custom interface is needed (instead of using the generic
Linux user-space PCI mapping) because the amount of internal
memory is huge (>32GB) and reading it via the PCI bar will take
a very long time.
This interface doesn't support concurrency in the same device.
In GAUDI and GOYA, this action can cause undefined behavior
in case the it is done while the device is executing user
workloads.
Only supported on GAUDI at this stage.
What: /sys/kernel/debug/habanalabs/hl<n>/device
Date: Jan 2019
KernelVersion: 5.1
@ -90,6 +108,24 @@ Description: Enables the root user to set the device to specific state.
Valid values are "disable", "enable", "suspend", "resume".
User can read this property to see the valid values
What: /sys/kernel/debug/habanalabs/hl<n>/dma_size
Date: Apr 2021
KernelVersion: 5.13
Contact: ogabbay@kernel.org
Description: Specify the size of the DMA transaction when using DMA to read
from the device's internal memory. The value can not be larger
than 128MB. Writing to this value initiates the DMA transfer.
When the write is finished, the user can read the "data_dma"
blob
What: /sys/kernel/debug/habanalabs/hl<n>/dump_security_violations
Date: Jan 2021
KernelVersion: 5.12
Contact: ogabbay@kernel.org
Description: Dumps all security violations to dmesg. This will also ack
all security violations meanings those violations will not be
dumped next time user calls this API
What: /sys/kernel/debug/habanalabs/hl<n>/engines
Date: Jul 2019
KernelVersion: 5.3
@ -154,6 +190,16 @@ Description: Displays the hop values and physical address for a given ASID
e.g. to display info about VA 0x1000 for ASID 1 you need to do:
echo "1 0x1000" > /sys/kernel/debug/habanalabs/hl0/mmu
What: /sys/kernel/debug/habanalabs/hl<n>/mmu_error
Date: Mar 2021
KernelVersion: 5.12
Contact: fkassabri@habana.ai
Description: Check and display page fault or access violation mmu errors for
all MMUs specified in mmu_cap_mask.
e.g. to display error info for MMU hw cap bit 9, you need to do:
echo "0x200" > /sys/kernel/debug/habanalabs/hl0/mmu_error
cat /sys/kernel/debug/habanalabs/hl0/mmu_error
What: /sys/kernel/debug/habanalabs/hl<n>/set_power_state
Date: Jan 2019
KernelVersion: 5.1
@ -161,6 +207,13 @@ Contact: ogabbay@kernel.org
Description: Sets the PCI power state. Valid values are "1" for D0 and "2"
for D3Hot
What: /sys/kernel/debug/habanalabs/hl<n>/stop_on_err
Date: Mar 2020
KernelVersion: 5.6
Contact: ogabbay@kernel.org
Description: Sets the stop-on_error option for the device engines. Value of
"0" is for disable, otherwise enable.
What: /sys/kernel/debug/habanalabs/hl<n>/userptr
Date: Jan 2019
KernelVersion: 5.1
@ -174,19 +227,4 @@ Date: Jan 2019
KernelVersion: 5.1
Contact: ogabbay@kernel.org
Description: Displays a list with information about all the active virtual
address mappings per ASID
What: /sys/kernel/debug/habanalabs/hl<n>/stop_on_err
Date: Mar 2020
KernelVersion: 5.6
Contact: ogabbay@kernel.org
Description: Sets the stop-on_error option for the device engines. Value of
"0" is for disable, otherwise enable.
What: /sys/kernel/debug/habanalabs/hl<n>/dump_security_violations
Date: Jan 2021
KernelVersion: 5.12
Contact: ogabbay@kernel.org
Description: Dumps all security violations to dmesg. This will also ack
all security violations meanings those violations will not be
dumped next time user calls this API
address mappings per ASID and all user mappings of HW blocks

View File

@ -44,3 +44,21 @@ Date: Feb 2020
KernelVersion: 5.7
Contact: Jack Wang <jinpu.wang@cloud.ionos.com> Danil Kipnis <danil.kipnis@cloud.ionos.com>
Description: Contains the device access mode: ro, rw or migration.
What: /sys/block/rnbd<N>/rnbd/resize
Date: Feb 2020
KernelVersion: 5.7
Contact: Jack Wang <jinpu.wang@cloud.ionos.com> Danil Kipnis <danil.kipnis@cloud.ionos.com>
Description: Write the number of sectors to change the size of the disk.
What: /sys/block/rnbd<N>/rnbd/remap_device
Date: Feb 2020
KernelVersion: 5.7
Contact: Jack Wang <jinpu.wang@cloud.ionos.com> Danil Kipnis <danil.kipnis@cloud.ionos.com>
Description: Remap the disconnected device if the session is not destroyed yet.
What: /sys/block/rnbd<N>/rnbd/nr_poll_queues
Date: Feb 2020
KernelVersion: 5.7
Contact: Jack Wang <jinpu.wang@cloud.ionos.com> Danil Kipnis <danil.kipnis@cloud.ionos.com>
Description: Contains the number of poll-mode queues

View File

@ -0,0 +1,14 @@
What: /sys/bus/coresight/devices/trbe<cpu>/align
Date: March 2021
KernelVersion: 5.13
Contact: Anshuman Khandual <anshuman.khandual@arm.com>
Description: (Read) Shows the TRBE write pointer alignment. This value
is fetched from the TRBIDR register.
What: /sys/bus/coresight/devices/trbe<cpu>/flag
Date: March 2021
KernelVersion: 5.13
Contact: Anshuman Khandual <anshuman.khandual@arm.com>
Description: (Read) Shows if TRBE updates in the memory are with access
and dirty flag updates as well. This value is fetched from
the TRBIDR register.

View File

@ -0,0 +1,30 @@
What: /sys/bus/event_source/devices/dsa*/format
Date: April 2021
KernelVersion: 5.13
Contact: Tom Zanussi <tom.zanussi@linux.intel.com>
Description: Read-only. Attribute group to describe the magic bits
that go into perf_event_attr.config or
perf_event_attr.config1 for the IDXD DSA pmu. (See also
ABI/testing/sysfs-bus-event_source-devices-format).
Each attribute in this group defines a bit range in
perf_event_attr.config or perf_event_attr.config1.
All supported attributes are listed below (See the
IDXD DSA Spec for possible attribute values)::
event_category = "config:0-3" - event category
event = "config:4-31" - event ID
filter_wq = "config1:0-31" - workqueue filter
filter_tc = "config1:32-39" - traffic class filter
filter_pgsz = "config1:40-43" - page size filter
filter_sz = "config1:44-51" - transfer size filter
filter_eng = "config1:52-59" - engine filter
What: /sys/bus/event_source/devices/dsa*/cpumask
Date: April 2021
KernelVersion: 5.13
Contact: Tom Zanussi <tom.zanussi@linux.intel.com>
Description: Read-only. This file always returns the cpu to which the
IDXD DSA pmu is bound for access to all dsa pmu
performance monitoring events.

View File

@ -33,6 +33,52 @@ Description:
Description of the physical chip / device for device X.
Typically a part number.
What: /sys/bus/iio/devices/iio:deviceX/label
KernelVersion: 5.8
Contact: linux-iio@vger.kernel.org
Description:
Optional symbolic label for a device.
This is useful for userspace to be able to better identify an
individual device.
The contents of the label are free-form, but there are some
standardized uses:
For proximity sensors which give the proximity (of a person) to
a certain wlan or wwan antenna the following standardized labels
are used:
* "proximity-wifi"
* "proximity-lte"
* "proximity-wifi-lte"
* "proximity-wifi-left"
* "proximity-wifi-right"
These are used to indicate to userspace that these proximity
sensors may be used to tune transmit power to ensure that
Specific Absorption Rate (SAR) limits are honored.
The "-left" and "-right" labels are for devices with multiple
antennas.
In some laptops/tablets the standardized proximity sensor labels
instead indicate proximity to a specific part of the device:
* "proximity-palmrest" indicates proximity to the keyboard's palmrest
* "proximity-palmrest-left" indicates proximity to the left part of the palmrest
* "proximity-palmrest-right" indicates proximity to the right part of the palmrest
* "proximity-lap" indicates the device is being used on someone's lap
Note "proximity-lap" is special in that its value may be
calculated by firmware from other sensor readings, rather then
being a raw sensor reading.
For accelerometers used in 2-in-1s with 360° (yoga-style) hinges,
which have an accelerometer in both their base and their display,
the following standardized labels are used:
* "accel-base"
* "accel-display"
What: /sys/bus/iio/devices/iio:deviceX/current_timestamp_clock
KernelVersion: 4.5
Contact: linux-iio@vger.kernel.org
@ -325,6 +371,7 @@ What: /sys/bus/iio/devices/iio:deviceX/in_humidityrelative_offset
What: /sys/bus/iio/devices/iio:deviceX/in_magn_offset
What: /sys/bus/iio/devices/iio:deviceX/in_rot_offset
What: /sys/bus/iio/devices/iio:deviceX/in_angl_offset
What: /sys/bus/iio/devices/iio:deviceX/in_capacitanceX_offset
KernelVersion: 2.6.35
Contact: linux-iio@vger.kernel.org
Description:
@ -656,6 +703,8 @@ What: /sys/.../iio:deviceX/events/in_voltageY_thresh_falling_en
What: /sys/.../iio:deviceX/events/in_voltageY_thresh_either_en
What: /sys/.../iio:deviceX/events/in_tempY_thresh_rising_en
What: /sys/.../iio:deviceX/events/in_tempY_thresh_falling_en
What: /sys/.../iio:deviceX/events/in_capacitanceY_thresh_rising_en
What: /sys/.../iio:deviceX/events/in_capacitanceY_thresh_falling_en
KernelVersion: 2.6.37
Contact: linux-iio@vger.kernel.org
Description:
@ -733,6 +782,32 @@ Description:
a given event type is enabled a future point (and not those for
whatever event was previously enabled).
What: /sys/.../events/in_capacitanceY_adaptive_thresh_rising_en
What: /sys/.../events/in_capacitanceY_adaptive_thresh_falling_en
KernelVersion: 5.13
Contact: linux-iio@vger.kernel.org
Descrption:
Adaptive thresholds are similar to normal fixed thresholds
but the value is expressed as an offset from a value which
provides a low frequency approximation of the channel itself.
Thus these detect if a rapid change occurs in the specified
direction which crosses tracking value + offset.
Tracking value calculation is devices specific.
What: /sys/.../in_capacitanceY_adaptive_thresh_rising_timeout
What: /sys/.../in_capacitanceY_adaptive_thresh_falling_timeout
KernelVersion: 5.11
Contact: linux-iio@vger.kernel.org
Descrption:
When adaptive thresholds are used, the tracking signal
may adjust too slowly to step changes in the raw signal.
*_timeout (in seconds) specifies a time for which the
difference between the slow tracking signal and the raw
signal is allowed to remain out-of-range before a reset
event occurs in which the tracking signal is made equal
to the raw signal, allowing slow tracking to resume and the
adaptive threshold event detection to function as expected.
What: /sys/.../events/in_accel_thresh_rising_value
What: /sys/.../events/in_accel_thresh_falling_value
What: /sys/.../events/in_accel_x_raw_thresh_rising_value
@ -773,6 +848,10 @@ What: /sys/.../events/in_proximity0_thresh_falling_value
What: /sys/.../events/in_proximity0_thresh_rising_value
What: /sys/.../events/in_illuminance_thresh_rising_value
What: /sys/.../events/in_illuminance_thresh_falling_value
What: /sys/.../events/in_capacitanceY_thresh_rising_value
What: /sys/.../events/in_capacitanceY_thresh_falling_value
What: /sys/.../events/in_capacitanceY_thresh_adaptive_rising_value
What: /sys/.../events/in_capacitanceY_thresh_falling_rising_value
KernelVersion: 2.6.37
Contact: linux-iio@vger.kernel.org
Description:
@ -1118,12 +1197,16 @@ Description:
What: /sys/bus/iio/devices/iio:deviceX/buffer/length
KernelVersion: 2.6.35
What: /sys/bus/iio/devices/iio:deviceX/bufferY/length
KernelVersion: 5.11
Contact: linux-iio@vger.kernel.org
Description:
Number of scans contained by the buffer.
What: /sys/bus/iio/devices/iio:deviceX/buffer/enable
KernelVersion: 2.6.35
What: /sys/bus/iio/devices/iio:deviceX/bufferY/enable
KernelVersion: 5.11
Contact: linux-iio@vger.kernel.org
Description:
Actually start the buffer capture up. Will start trigger
@ -1131,11 +1214,16 @@ Description:
What: /sys/bus/iio/devices/iio:deviceX/scan_elements
KernelVersion: 2.6.37
What: /sys/bus/iio/devices/iio:deviceX/bufferY
KernelVersion: 5.11
Contact: linux-iio@vger.kernel.org
Description:
Directory containing interfaces for elements that will be
captured for a single triggered sample set in the buffer.
Since kernel 5.11 the scan_elements attributes are merged into
the bufferY directory, to be configurable per buffer.
What: /sys/.../iio:deviceX/scan_elements/in_accel_x_en
What: /sys/.../iio:deviceX/scan_elements/in_accel_y_en
What: /sys/.../iio:deviceX/scan_elements/in_accel_z_en
@ -1164,6 +1252,34 @@ What: /sys/.../iio:deviceX/scan_elements/in_pressure_en
What: /sys/.../iio:deviceX/scan_elements/in_rot_quaternion_en
What: /sys/.../iio:deviceX/scan_elements/in_proximity_en
KernelVersion: 2.6.37
What: /sys/.../iio:deviceX/bufferY/in_accel_x_en
What: /sys/.../iio:deviceX/bufferY/in_accel_y_en
What: /sys/.../iio:deviceX/bufferY/in_accel_z_en
What: /sys/.../iio:deviceX/bufferY/in_anglvel_x_en
What: /sys/.../iio:deviceX/bufferY/in_anglvel_y_en
What: /sys/.../iio:deviceX/bufferY/in_anglvel_z_en
What: /sys/.../iio:deviceX/bufferY/in_magn_x_en
What: /sys/.../iio:deviceX/bufferY/in_magn_y_en
What: /sys/.../iio:deviceX/bufferY/in_magn_z_en
What: /sys/.../iio:deviceX/bufferY/in_rot_from_north_magnetic_en
What: /sys/.../iio:deviceX/bufferY/in_rot_from_north_true_en
What: /sys/.../iio:deviceX/bufferY/in_rot_from_north_magnetic_tilt_comp_en
What: /sys/.../iio:deviceX/bufferY/in_rot_from_north_true_tilt_comp_en
What: /sys/.../iio:deviceX/bufferY/in_timestamp_en
What: /sys/.../iio:deviceX/bufferY/in_voltageY_supply_en
What: /sys/.../iio:deviceX/bufferY/in_voltageY_en
What: /sys/.../iio:deviceX/bufferY/in_voltageY-voltageZ_en
What: /sys/.../iio:deviceX/bufferY/in_voltageY_i_en
What: /sys/.../iio:deviceX/bufferY/in_voltageY_q_en
What: /sys/.../iio:deviceX/bufferY/in_voltage_i_en
What: /sys/.../iio:deviceX/bufferY/in_voltage_q_en
What: /sys/.../iio:deviceX/bufferY/in_incli_x_en
What: /sys/.../iio:deviceX/bufferY/in_incli_y_en
What: /sys/.../iio:deviceX/bufferY/in_pressureY_en
What: /sys/.../iio:deviceX/bufferY/in_pressure_en
What: /sys/.../iio:deviceX/bufferY/in_rot_quaternion_en
What: /sys/.../iio:deviceX/bufferY/in_proximity_en
KernelVersion: 5.11
Contact: linux-iio@vger.kernel.org
Description:
Scan element control for triggered data capture.
@ -1185,6 +1301,23 @@ What: /sys/.../iio:deviceX/scan_elements/in_pressure_type
What: /sys/.../iio:deviceX/scan_elements/in_rot_quaternion_type
What: /sys/.../iio:deviceX/scan_elements/in_proximity_type
KernelVersion: 2.6.37
What: /sys/.../iio:deviceX/bufferY/in_accel_type
What: /sys/.../iio:deviceX/bufferY/in_anglvel_type
What: /sys/.../iio:deviceX/bufferY/in_magn_type
What: /sys/.../iio:deviceX/bufferY/in_incli_type
What: /sys/.../iio:deviceX/bufferY/in_voltageY_type
What: /sys/.../iio:deviceX/bufferY/in_voltage_type
What: /sys/.../iio:deviceX/bufferY/in_voltageY_supply_type
What: /sys/.../iio:deviceX/bufferY/in_voltageY_i_type
What: /sys/.../iio:deviceX/bufferY/in_voltageY_q_type
What: /sys/.../iio:deviceX/bufferY/in_voltage_i_type
What: /sys/.../iio:deviceX/bufferY/in_voltage_q_type
What: /sys/.../iio:deviceX/bufferY/in_timestamp_type
What: /sys/.../iio:deviceX/bufferY/in_pressureY_type
What: /sys/.../iio:deviceX/bufferY/in_pressure_type
What: /sys/.../iio:deviceX/bufferY/in_rot_quaternion_type
What: /sys/.../iio:deviceX/bufferY/in_proximity_type
KernelVersion: 5.11
Contact: linux-iio@vger.kernel.org
Description:
Description of the scan element data storage within the buffer
@ -1241,6 +1374,33 @@ What: /sys/.../iio:deviceX/scan_elements/in_pressure_index
What: /sys/.../iio:deviceX/scan_elements/in_rot_quaternion_index
What: /sys/.../iio:deviceX/scan_elements/in_proximity_index
KernelVersion: 2.6.37
What: /sys/.../iio:deviceX/bufferY/in_voltageY_index
What: /sys/.../iio:deviceX/bufferY/in_voltageY_supply_index
What: /sys/.../iio:deviceX/bufferY/in_voltageY_i_index
What: /sys/.../iio:deviceX/bufferY/in_voltageY_q_index
What: /sys/.../iio:deviceX/bufferY/in_voltage_i_index
What: /sys/.../iio:deviceX/bufferY/in_voltage_q_index
What: /sys/.../iio:deviceX/bufferY/in_accel_x_index
What: /sys/.../iio:deviceX/bufferY/in_accel_y_index
What: /sys/.../iio:deviceX/bufferY/in_accel_z_index
What: /sys/.../iio:deviceX/bufferY/in_anglvel_x_index
What: /sys/.../iio:deviceX/bufferY/in_anglvel_y_index
What: /sys/.../iio:deviceX/bufferY/in_anglvel_z_index
What: /sys/.../iio:deviceX/bufferY/in_magn_x_index
What: /sys/.../iio:deviceX/bufferY/in_magn_y_index
What: /sys/.../iio:deviceX/bufferY/in_magn_z_index
What: /sys/.../iio:deviceX/bufferY/in_rot_from_north_magnetic_index
What: /sys/.../iio:deviceX/bufferY/in_rot_from_north_true_index
What: /sys/.../iio:deviceX/bufferY/in_rot_from_north_magnetic_tilt_comp_index
What: /sys/.../iio:deviceX/bufferY/in_rot_from_north_true_tilt_comp_index
What: /sys/.../iio:deviceX/bufferY/in_incli_x_index
What: /sys/.../iio:deviceX/bufferY/in_incli_y_index
What: /sys/.../iio:deviceX/bufferY/in_timestamp_index
What: /sys/.../iio:deviceX/bufferY/in_pressureY_index
What: /sys/.../iio:deviceX/bufferY/in_pressure_index
What: /sys/.../iio:deviceX/bufferY/in_rot_quaternion_index
What: /sys/.../iio:deviceX/bufferY/in_proximity_index
KernelVersion: 5.11
Contact: linux-iio@vger.kernel.org
Description:
A single positive integer specifying the position of this
@ -1455,6 +1615,8 @@ Description:
What: /sys/bus/iio/devices/iio:deviceX/buffer/watermark
KernelVersion: 4.2
What: /sys/bus/iio/devices/iio:deviceX/bufferY/watermark
KernelVersion: 5.11
Contact: linux-iio@vger.kernel.org
Description:
A single positive integer specifying the maximum number of scan
@ -1473,6 +1635,8 @@ Description:
What: /sys/bus/iio/devices/iio:deviceX/buffer/data_available
KernelVersion: 4.16
What: /sys/bus/iio/devices/iio:deviceX/bufferY/data_available
KernelVersion: 5.11
Contact: linux-iio@vger.kernel.org
Description:
A read-only value indicating the bytes of data available in the
@ -1823,3 +1987,12 @@ Description:
hinge, keyboard, screen. It means the three channels
each correspond respectively to hinge angle, keyboard angle,
and screen angle.
What: /sys/bus/iio/devices/iio:deviceX/in_illuminance_hysteresis_relative
What: /sys/bus/iio/devices/iio:deviceX/in_intensity_hysteresis_relative
KernelVersion: 5.12
Contact: linux-iio@vger.kernel.org
Description:
Specify the percent for light sensor relative to the channel
absolute value that a data field should change before an event
is generated. Units are a percentage of the prior reading.

View File

@ -1,11 +1,3 @@
What: /sys/bus/iio/devices/iio:deviceX/sensor_sensitivity
Date: January 2017
KernelVersion: 4.11
Contact: linux-iio@vger.kernel.org
Description:
Show or set the gain boost of the amp, from 0-31 range.
default 31
What: /sys/bus/iio/devices/iio:deviceX/sensor_max_range
Date: January 2017
KernelVersion: 4.11

View File

@ -0,0 +1,10 @@
What: /sys/bus/iio/devices/iio:deviceX/out_current_heater_raw
What: /sys/bus/iio/devices/iio:deviceX/out_current_heater_raw_available
KernelVersion: 5.3.8
Contact: linux-iio@vger.kernel.org
Description:
Controls the heater device within the humidity sensor to get
rid of excess condensation.
In some devices, this is just a switch in which case 0 = OFF,
and 1 = ON.

View File

@ -8,3 +8,17 @@ Description:
considered close to the device. If the value read from the
sensor is above or equal to the value in this file an object
should typically be considered near.
What: /sys/bus/iio/devices/iio:deviceX/sensor_sensitivity
Date: March 2014
KernelVersion: 3.15
Contact: linux-iio@vger.kernel.org
Description:
Proximity sensors sometimes have a controllable amplifier
on the signal from which time of flight measurements are
taken.
The appropriate values to take is dependent on both the
sensor and it's operating environment:
* as3935 (0-31 range)
18 = indoors (default)
14 = outdoors

View File

@ -6,15 +6,6 @@ Description:
Get the current distance in meters of storm (1km steps)
1000-40000 = distance in meters
What: /sys/bus/iio/devices/iio:deviceX/sensor_sensitivity
Date: March 2014
KernelVersion: 3.15
Contact: Matt Ranostay <matt.ranostay@konsulko.com>
Description:
Show or set the gain boost of the amp, from 0-31 range.
18 = indoors (default)
14 = outdoors
What /sys/bus/iio/devices/iio:deviceX/noise_level_tripped
Date: May 2017
KernelVersion: 4.13

View File

@ -5,7 +5,7 @@ Interface Table (NFIT)' section in the ACPI specification
What: /sys/bus/nd/devices/nmemX/nfit/serial
Date: Jun, 2015
KernelVersion: v4.2
Contact: linux-nvdimm@lists.01.org
Contact: nvdimm@lists.linux.dev
Description:
(RO) Serial number of the NVDIMM (non-volatile dual in-line
memory module), assigned by the module vendor.
@ -14,7 +14,7 @@ Description:
What: /sys/bus/nd/devices/nmemX/nfit/handle
Date: Apr, 2015
KernelVersion: v4.2
Contact: linux-nvdimm@lists.01.org
Contact: nvdimm@lists.linux.dev
Description:
(RO) The address (given by the _ADR object) of the device on its
parent bus of the NVDIMM device containing the NVDIMM region.
@ -23,7 +23,7 @@ Description:
What: /sys/bus/nd/devices/nmemX/nfit/device
Date: Apr, 2015
KernelVersion: v4.1
Contact: linux-nvdimm@lists.01.org
Contact: nvdimm@lists.linux.dev
Description:
(RO) Device id for the NVDIMM, assigned by the module vendor.
@ -31,7 +31,7 @@ Description:
What: /sys/bus/nd/devices/nmemX/nfit/rev_id
Date: Jun, 2015
KernelVersion: v4.2
Contact: linux-nvdimm@lists.01.org
Contact: nvdimm@lists.linux.dev
Description:
(RO) Revision of the NVDIMM, assigned by the module vendor.
@ -39,7 +39,7 @@ Description:
What: /sys/bus/nd/devices/nmemX/nfit/phys_id
Date: Apr, 2015
KernelVersion: v4.2
Contact: linux-nvdimm@lists.01.org
Contact: nvdimm@lists.linux.dev
Description:
(RO) Handle (i.e., instance number) for the SMBIOS (system
management BIOS) Memory Device structure describing the NVDIMM
@ -49,7 +49,7 @@ Description:
What: /sys/bus/nd/devices/nmemX/nfit/flags
Date: Jun, 2015
KernelVersion: v4.2
Contact: linux-nvdimm@lists.01.org
Contact: nvdimm@lists.linux.dev
Description:
(RO) The flags in the NFIT memory device sub-structure indicate
the state of the data on the nvdimm relative to its energy
@ -68,7 +68,7 @@ What: /sys/bus/nd/devices/nmemX/nfit/format1
What: /sys/bus/nd/devices/nmemX/nfit/formats
Date: Apr, 2016
KernelVersion: v4.7
Contact: linux-nvdimm@lists.01.org
Contact: nvdimm@lists.linux.dev
Description:
(RO) The interface codes indicate support for persistent memory
mapped directly into system physical address space and / or a
@ -84,7 +84,7 @@ Description:
What: /sys/bus/nd/devices/nmemX/nfit/vendor
Date: Apr, 2016
KernelVersion: v4.7
Contact: linux-nvdimm@lists.01.org
Contact: nvdimm@lists.linux.dev
Description:
(RO) Vendor id of the NVDIMM.
@ -92,7 +92,7 @@ Description:
What: /sys/bus/nd/devices/nmemX/nfit/dsm_mask
Date: May, 2016
KernelVersion: v4.7
Contact: linux-nvdimm@lists.01.org
Contact: nvdimm@lists.linux.dev
Description:
(RO) The bitmask indicates the supported device specific control
functions relative to the NVDIMM command family supported by the
@ -102,7 +102,7 @@ Description:
What: /sys/bus/nd/devices/nmemX/nfit/family
Date: Apr, 2016
KernelVersion: v4.7
Contact: linux-nvdimm@lists.01.org
Contact: nvdimm@lists.linux.dev
Description:
(RO) Displays the NVDIMM family command sets. Values
0, 1, 2 and 3 correspond to NVDIMM_FAMILY_INTEL,
@ -118,7 +118,7 @@ Description:
What: /sys/bus/nd/devices/nmemX/nfit/id
Date: Apr, 2016
KernelVersion: v4.7
Contact: linux-nvdimm@lists.01.org
Contact: nvdimm@lists.linux.dev
Description:
(RO) ACPI specification 6.2 section 5.2.25.9, defines an
identifier for an NVDIMM, which refelects the id attribute.
@ -127,7 +127,7 @@ Description:
What: /sys/bus/nd/devices/nmemX/nfit/subsystem_vendor
Date: Apr, 2016
KernelVersion: v4.7
Contact: linux-nvdimm@lists.01.org
Contact: nvdimm@lists.linux.dev
Description:
(RO) Sub-system vendor id of the NVDIMM non-volatile memory
subsystem controller.
@ -136,7 +136,7 @@ Description:
What: /sys/bus/nd/devices/nmemX/nfit/subsystem_rev_id
Date: Apr, 2016
KernelVersion: v4.7
Contact: linux-nvdimm@lists.01.org
Contact: nvdimm@lists.linux.dev
Description:
(RO) Sub-system revision id of the NVDIMM non-volatile memory subsystem
controller, assigned by the non-volatile memory subsystem
@ -146,7 +146,7 @@ Description:
What: /sys/bus/nd/devices/nmemX/nfit/subsystem_device
Date: Apr, 2016
KernelVersion: v4.7
Contact: linux-nvdimm@lists.01.org
Contact: nvdimm@lists.linux.dev
Description:
(RO) Sub-system device id for the NVDIMM non-volatile memory
subsystem controller, assigned by the non-volatile memory
@ -156,7 +156,7 @@ Description:
What: /sys/bus/nd/devices/ndbusX/nfit/revision
Date: Jun, 2015
KernelVersion: v4.2
Contact: linux-nvdimm@lists.01.org
Contact: nvdimm@lists.linux.dev
Description:
(RO) ACPI NFIT table revision number.
@ -164,7 +164,7 @@ Description:
What: /sys/bus/nd/devices/ndbusX/nfit/scrub
Date: Sep, 2016
KernelVersion: v4.9
Contact: linux-nvdimm@lists.01.org
Contact: nvdimm@lists.linux.dev
Description:
(RW) This shows the number of full Address Range Scrubs (ARS)
that have been completed since driver load time. Userspace can
@ -177,7 +177,7 @@ Description:
What: /sys/bus/nd/devices/ndbusX/nfit/hw_error_scrub
Date: Sep, 2016
KernelVersion: v4.9
Contact: linux-nvdimm@lists.01.org
Contact: nvdimm@lists.linux.dev
Description:
(RW) Provides a way to toggle the behavior between just adding
the address (cache line) where the MCE happened to the poison
@ -196,7 +196,7 @@ Description:
What: /sys/bus/nd/devices/ndbusX/nfit/dsm_mask
Date: Jun, 2017
KernelVersion: v4.13
Contact: linux-nvdimm@lists.01.org
Contact: nvdimm@lists.linux.dev
Description:
(RO) The bitmask indicates the supported bus specific control
functions. See the section named 'NVDIMM Root Device _DSMs' in
@ -205,7 +205,7 @@ Description:
What: /sys/bus/nd/devices/ndbusX/nfit/firmware_activate_noidle
Date: Apr, 2020
KernelVersion: v5.8
Contact: linux-nvdimm@lists.01.org
Contact: nvdimm@lists.linux.dev
Description:
(RW) The Intel platform implementation of firmware activate
support exposes an option let the platform force idle devices in
@ -225,7 +225,7 @@ Description:
What: /sys/bus/nd/devices/regionX/nfit/range_index
Date: Jun, 2015
KernelVersion: v4.2
Contact: linux-nvdimm@lists.01.org
Contact: nvdimm@lists.linux.dev
Description:
(RO) A unique number provided by the BIOS to identify an address
range. Used by NVDIMM Region Mapping Structure to uniquely refer

View File

@ -1,7 +1,7 @@
What: /sys/bus/nd/devices/nmemX/papr/flags
Date: Apr, 2020
KernelVersion: v5.8
Contact: linuxppc-dev <linuxppc-dev@lists.ozlabs.org>, linux-nvdimm@lists.01.org,
Contact: linuxppc-dev <linuxppc-dev@lists.ozlabs.org>, nvdimm@lists.linux.dev,
Description:
(RO) Report flags indicating various states of a
papr-pmem NVDIMM device. Each flag maps to a one or
@ -36,7 +36,7 @@ Description:
What: /sys/bus/nd/devices/nmemX/papr/perf_stats
Date: May, 2020
KernelVersion: v5.9
Contact: linuxppc-dev <linuxppc-dev@lists.ozlabs.org>, linux-nvdimm@lists.01.org,
Contact: linuxppc-dev <linuxppc-dev@lists.ozlabs.org>, nvdimm@lists.linux.dev,
Description:
(RO) Report various performance stats related to papr-scm NVDIMM
device. Each stat is reported on a new line with each line

View File

@ -195,10 +195,13 @@ What: /sys/bus/pci/devices/.../index
Date: July 2010
Contact: Narendra K <narendra_k@dell.com>, linux-bugs@dell.com
Description:
Reading this attribute will provide the firmware
given instance (SMBIOS type 41 device type instance) of the
PCI device. The attribute will be created only if the firmware
has given an instance number to the PCI device.
Reading this attribute will provide the firmware given instance
number of the PCI device. Depending on the platform this can
be for example the SMBIOS type 41 device type instance or the
user-defined ID (UID) on s390. The attribute will be created
only if the firmware has given an instance number to the PCI
device and that number is guaranteed to uniquely identify the
device in the system.
Users:
Userspace applications interested in knowing the
firmware assigned device type instance of the PCI
@ -375,3 +378,32 @@ Description:
The value comes from the PCI kernel device state and can be one
of: "unknown", "error", "D0", D1", "D2", "D3hot", "D3cold".
The file is read only.
What: /sys/bus/pci/devices/.../sriov_vf_total_msix
Date: January 2021
Contact: Leon Romanovsky <leonro@nvidia.com>
Description:
This file is associated with a SR-IOV physical function (PF).
It contains the total number of MSI-X vectors available for
assignment to all virtual functions (VFs) associated with PF.
The value will be zero if the device doesn't support this
functionality. For supported devices, the value will be
constant and won't be changed after MSI-X vectors assignment.
What: /sys/bus/pci/devices/.../sriov_vf_msix_count
Date: January 2021
Contact: Leon Romanovsky <leonro@nvidia.com>
Description:
This file is associated with a SR-IOV virtual function (VF).
It allows configuration of the number of MSI-X vectors for
the VF. This allows devices that have a global pool of MSI-X
vectors to optimally divide them between VFs based on VF usage.
The values accepted are:
* > 0 - this number will be reported as the Table Size in the
VF's MSI-X capability
* < 0 - not valid
* = 0 - will reset to the device default value
The file is writable if the PF is bound to a driver that
implements ->sriov_set_msix_vec_count().

View File

@ -1,4 +1,5 @@
What: /sys/devices/pci0000:00/*/QEMU0001:00/capability
What: /sys/devices/pci0000:00/*/QEMU0001:00/capability for MMIO
/sys/bus/pci/drivers/pvpanic-pci/0000:00:0*.0/capability for PCI
Date: Jan 2021
Contact: zhenwei pi <pizhenwei@bytedance.com>
Description:
@ -12,6 +13,7 @@ Description:
https://git.qemu.org/?p=qemu.git;a=blob_plain;f=docs/specs/pvpanic.txt
What: /sys/devices/pci0000:00/*/QEMU0001:00/events
/sys/bus/pci/drivers/pvpanic-pci/0000:00:0*.0/events for PCI
Date: Jan 2021
Contact: zhenwei pi <pizhenwei@bytedance.com>
Description:

View File

@ -1,31 +1,3 @@
What: /sys/bus/thunderbolt/devices/<xdomain>/rx_speed
Date: Feb 2021
KernelVersion: 5.11
Contact: Isaac Hazan <isaac.hazan@intel.com>
Description: This attribute reports the XDomain RX speed per lane.
All RX lanes run at the same speed.
What: /sys/bus/thunderbolt/devices/<xdomain>/rx_lanes
Date: Feb 2021
KernelVersion: 5.11
Contact: Isaac Hazan <isaac.hazan@intel.com>
Description: This attribute reports the number of RX lanes the XDomain
is using simultaneously through its upstream port.
What: /sys/bus/thunderbolt/devices/<xdomain>/tx_speed
Date: Feb 2021
KernelVersion: 5.11
Contact: Isaac Hazan <isaac.hazan@intel.com>
Description: This attribute reports the XDomain TX speed per lane.
All TX lanes run at the same speed.
What: /sys/bus/thunderbolt/devices/<xdomain>/tx_lanes
Date: Feb 2021
KernelVersion: 5.11
Contact: Isaac Hazan <isaac.hazan@intel.com>
Description: This attribute reports number of TX lanes the XDomain
is using simultaneously through its upstream port.
What: /sys/bus/thunderbolt/devices/.../domainX/boot_acl
Date: Jun 2018
KernelVersion: 4.17
@ -162,6 +134,13 @@ Contact: thunderbolt-software@lists.01.org
Description: This attribute contains name of this device extracted from
the device DROM.
What: /sys/bus/thunderbolt/devices/.../maxhopid
Date: Jul 2021
KernelVersion: 5.13
Contact: Mika Westerberg <mika.westerberg@linux.intel.com>
Description: Only set for XDomains. The maximum HopID the other host
supports as its input HopID.
What: /sys/bus/thunderbolt/devices/.../rx_speed
Date: Jan 2020
KernelVersion: 5.5

View File

@ -97,10 +97,7 @@ Description:
object. The values are represented in ms. If the value is
less than 1 jiffy, it is considered to be 0, which means
no polling. This value is meaningless if the governor is
not polling; thus. If the governor is not using
devfreq-provided central polling
(/sys/class/devfreq/.../central_polling is 0), this value
may be useless.
not polling.
A list of governors that support the node:
- simple_ondmenad

View File

@ -51,3 +51,15 @@ Description:
Boolean value indicating whether the PHY device is used in
standalone mode, without a net_device associated, by PHYLINK.
Attribute created only when this is the case.
What: /sys/class/mdio_bus/<bus>/<device>/phy_dev_flags
Date: March 2021
KernelVersion: 5.13
Contact: netdev@vger.kernel.org
Description:
32-bit hexadecimal number representing a bit mask of the
configuration bits passed from the consumer of the PHY
(Ethernet MAC, switch, etc.) to the PHY driver. The flags are
only used internally by the kernel and their placement are
not meant to be stable across kernel versions. This is intended
for facilitating the debugging of PHY drivers.

View File

@ -58,3 +58,19 @@ Description:
Indicates the mux id associated to the qmimux network interface
during its creation.
What: /sys/class/net/<iface>/qmi/pass_through
Date: January 2021
KernelVersion: 5.12
Contact: Subash Abhinov Kasiviswanathan <subashab@codeaurora.org>
Description:
Boolean. Default: 'N'
Set this to 'Y' to enable 'pass-through' mode, allowing packets
in MAP format to be passed on to the stack.
Normally the rmnet driver (CONFIG_RMNET) is then used to process
and demultiplex these packets.
'Pass-through' mode can be enabled when the device is in
'raw-ip' mode only.

View File

@ -0,0 +1,15 @@
What: /sys/class/power_supply/<supply_name>/alarm
Date: April 2021
KernelVersion: 5.13
Contact: Maximilian Luz <luzmaximilian@gmail.com>
Description:
Battery trip point. When the remaining battery capacity crosses this
value in either direction, the system will be notified and if
necessary woken.
Set to zero to clear/disable.
Access: Read, Write
Valid values: In micro-Wh or micro-Ah, depending on the power unit
of the battery

View File

@ -85,6 +85,19 @@ Description: Expected format is the following::
By default "rw" is used.
nr_poll_queues
specifies the number of poll-mode queues. If the IO has HIPRI flag,
the block-layer will send the IO via the poll-mode queue.
For fast network and device the polling is faster than interrupt-base
IO handling because it saves time for context switching, switching to
another process, handling the interrupt and switching back to the
issuing process.
Set -1 if you want to set it as the number of CPUs
By default rnbd client creates only irq-mode queues.
NOTICE: MUST make a unique session for a device using the poll-mode queues.
Exit Codes:
If the device is already mapped it will fail with EEXIST. If the input

View File

@ -34,6 +34,9 @@ Description: Multipath policy specifies which path should be selected on each IO
min-inflight (1):
select path with minimum inflights.
min-latency (2):
select path with minimum latency.
What: /sys/class/rtrs-client/<session-name>/paths/
Date: Feb 2020
KernelVersion: 5.7
@ -95,6 +98,15 @@ KernelVersion: 5.7
Contact: Jack Wang <jinpu.wang@cloud.ionos.com> Danil Kipnis <danil.kipnis@cloud.ionos.com>
Description: RO, Contains the destination address of the path
What: /sys/class/rtrs-client/<session-name>/paths/<src@dst>/cur_latency
Date: Feb 2020
KernelVersion: 5.7
Contact: Jack Wang <jinpu.wang@cloud.ionos.com> Danil Kipnis <danil.kipnis@cloud.ionos.com>
Description: RO, Contains the latency time calculated by the heart-beat messages.
Whenever the client sends heart-beat message, it checks the time gap
between sending the heart-beat message and receiving the ACK.
This value can be changed regularly.
What: /sys/class/rtrs-client/<session-name>/paths/<src@dst>/stats/reset_all
Date: Feb 2020
KernelVersion: 5.7

View File

@ -285,7 +285,7 @@ Description: Disable L3 cache indices
All AMD processors with L3 caches provide this functionality.
For details, see BKDGs at
http://developer.amd.com/documentation/guides/Pages/default.aspx
https://www.amd.com/en/support/tech-docs?keyword=bios+kernel
What: /sys/devices/system/cpu/cpufreq/boost

View File

@ -15,3 +15,12 @@ Description: Reports the model identification provided by the touchscreen, fo
Access: Read
Valid values: Represented as string
What: /sys/bus/i2c/devices/xxx/type
Date: Jan 2021
Contact: linux-input@vger.kernel.org
Description: Reports the type identification provided by the touchscreen, for example "PCAP82H80 Series"
Access: Read
Valid values: Represented as string

View File

@ -0,0 +1,49 @@
What: /sys/class/misc/drivers/dw-xdata-pcie.<device>/write
Date: April 2021
KernelVersion: 5.13
Contact: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Description: Allows the user to enable the PCIe traffic generator which
will create write TLPs frames - from the Root Complex to the
Endpoint direction or to disable the PCIe traffic generator
in all directions.
Write y/1/on to enable, n/0/off to disable
Usage e.g.
echo 1 > /sys/class/misc/dw-xdata-pcie.<device>/write
or
echo 0 > /sys/class/misc/dw-xdata-pcie.<device>/write
The user can read the current PCIe link throughput generated
through this generator in MB/s.
Usage e.g.
cat /sys/class/misc/dw-xdata-pcie.<device>/write
204
The file is read and write.
What: /sys/class/misc/dw-xdata-pcie.<device>/read
Date: April 2021
KernelVersion: 5.13
Contact: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Description: Allows the user to enable the PCIe traffic generator which
will create read TLPs frames - from the Endpoint to the Root
Complex direction or to disable the PCIe traffic generator
in all directions.
Write y/1/on to enable, n/0/off to disable
Usage e.g.
echo 1 > /sys/class/misc/dw-xdata-pcie.<device>/read
or
echo 0 > /sys/class/misc/dw-xdata-pcie.<device>/read
The user can read the current PCIe link throughput generated
through this generator in MB/s.
Usage e.g.
cat /sys/class/misc/dw-xdata-pcie.<device>/read
199
The file is read and write.

View File

@ -276,7 +276,7 @@ Date April 2019
Contact: "Daniel Rosenberg" <drosen@google.com>
Description: If checkpoint=disable, it displays the number of blocks that
are unusable.
If checkpoint=enable it displays the enumber of blocks that
If checkpoint=enable it displays the number of blocks that
would be unusable if checkpoint=disable were to be set.
What: /sys/fs/f2fs/<disk>/encoding
@ -409,3 +409,32 @@ Description: Give a way to change checkpoint merge daemon's io priority.
I/O priority "3". We can select the class between "rt" and "be",
and set the I/O priority within valid range of it. "," delimiter
is necessary in between I/O class and priority number.
What: /sys/fs/f2fs/<disk>/ovp_segments
Date: March 2021
Contact: "Jaegeuk Kim" <jaegeuk@kernel.org>
Description: Shows the number of overprovision segments.
What: /sys/fs/f2fs/<disk>/compr_written_block
Date: March 2021
Contact: "Daeho Jeong" <daehojeong@google.com>
Description: Show the block count written after compression since mount. Note
that when the compressed blocks are deleted, this count doesn't
decrease. If you write "0" here, you can initialize
compr_written_block and compr_saved_block to "0".
What: /sys/fs/f2fs/<disk>/compr_saved_block
Date: March 2021
Contact: "Daeho Jeong" <daehojeong@google.com>
Description: Show the saved block count with compression since mount. Note
that when the compressed blocks are deleted, this count doesn't
decrease. If you write "0" here, you can initialize
compr_written_block and compr_saved_block to "0".
What: /sys/fs/f2fs/<disk>/compr_new_inode
Date: March 2021
Contact: "Daeho Jeong" <daehojeong@google.com>
Description: Show the count of inode newly enabled for compression since mount.
Note that when the compression is disabled for the files, this count
doesn't decrease. If you write "0" here, you can initialize
compr_new_inode to "0".

View File

@ -0,0 +1,25 @@
What: /sys/kernel/mm/cma/
Date: Feb 2021
Contact: Minchan Kim <minchan@kernel.org>
Description:
/sys/kernel/mm/cma/ contains a subdirectory for each CMA
heap name (also sometimes called CMA areas).
Each CMA heap subdirectory (that is, each
/sys/kernel/mm/cma/<cma-heap-name> directory) contains the
following items:
alloc_pages_success
alloc_pages_fail
What: /sys/kernel/mm/cma/<cma-heap-name>/alloc_pages_success
Date: Feb 2021
Contact: Minchan Kim <minchan@kernel.org>
Description:
the number of pages CMA API succeeded to allocate
What: /sys/kernel/mm/cma/<cma-heap-name>/alloc_pages_fail
Date: Feb 2021
Contact: Minchan Kim <minchan@kernel.org>
Description:
the number of pages CMA API failed to allocate

View File

@ -37,13 +37,13 @@ Description: Maximum time allowed for periodic transfers per microframe (μs)
What: /sys/module/*/{coresize,initsize}
Date: Jan 2012
KernelVersion:»·3.3
KernelVersion: 3.3
Contact: Kay Sievers <kay.sievers@vrfy.org>
Description: Module size in bytes.
What: /sys/module/*/taint
Date: Jan 2012
KernelVersion:»·3.3
KernelVersion: 3.3
Contact: Kay Sievers <kay.sievers@vrfy.org>
Description: Module taint flags:
== =====================

View File

@ -0,0 +1,20 @@
What: /sys/devices/platform/<platform>/etr3
Date: Apr 2021
KernelVersion: 5.13
Contact: "Tomas Winkler" <tomas.winkler@intel.com>
Description:
The file exposes "Extended Test Mode Register 3" global
reset bits. The bits are used during an Intel platform
manufacturing process to indicate that consequent reset
of the platform is a "global reset". This type of reset
is required in order for manufacturing configurations
to take effect.
Display global reset setting bits for PMC.
* bit 31 - global reset is locked
* bit 20 - global reset is set
Writing bit 20 value to the etr3 will induce
a platform "global reset" upon consequent platform reset,
in case the register is not locked.
The "global reset bit" should be locked on a production
system and the file is in read-only mode.

View File

@ -48,7 +48,6 @@ quota-tools 3.09 quota -V
PPP 2.4.0 pppd --version
nfs-utils 1.0.5 showmount --version
procps 3.2.0 ps --version
oprofile 0.9 oprofiled --version
udev 081 udevd --version
grub 0.93 grub --version || grub-install --version
mcelog 0.6 mcelog --version

View File

@ -847,7 +847,7 @@ Symposium on Distributed Computing}
'It's entirely possible that the current user could be replaced
by RCU and/or seqlocks, and we could get rid of brlocks entirely.'
.
Steve Hemminger responds by replacing them with RCU.
Stephen Hemminger responds by replacing them with RCU.
}
}

View File

@ -11,8 +11,8 @@ restrictions without needing to sign the files individually.
The LSM is selectable at build-time with ``CONFIG_SECURITY_LOADPIN``, and
can be controlled at boot-time with the kernel command line option
"``loadpin.enabled``". By default, it is enabled, but can be disabled at
boot ("``loadpin.enabled=0``").
"``loadpin.enforce``". By default, it is enabled, but can be disabled at
boot ("``loadpin.enforce=0``").
LoadPin starts pinning when it sees the first file loaded. If the
block device backing the filesystem is not read-only, a sysctl is
@ -28,4 +28,4 @@ different mechanisms such as ``CONFIG_MODULE_SIG`` and
``CONFIG_KEXEC_VERIFY_SIG`` to verify kernel module and kernel image while
still use LoadPin to protect the integrity of other files kernel loads. The
full list of valid file types can be found in ``kernel_read_file_str``
defined in ``include/linux/fs.h``.
defined in ``include/linux/kernel_read_file.h``.

View File

@ -17,6 +17,7 @@ Control Groups version 1
hugetlb
memcg_test
memory
misc
net_cls
net_prio
pids

View File

@ -360,8 +360,8 @@ U != 0, K = unlimited:
U != 0, K < U:
Kernel memory is a subset of the user memory. This setup is useful in
deployments where the total amount of memory per-cgroup is overcommited.
Overcommiting kernel memory limits is definitely not recommended, since the
deployments where the total amount of memory per-cgroup is overcommitted.
Overcommitting kernel memory limits is definitely not recommended, since the
box can still run out of non-reclaimable memory.
In this case, the admin could set up K so that the sum of all groups is
never greater than the total memory, and freely set U at the cost of his
@ -851,6 +851,9 @@ At reading, current status of OOM is shown.
(if 1, oom-killer is disabled)
- under_oom 0 or 1
(if 1, the memory cgroup is under OOM, tasks may be stopped.)
- oom_kill integer counter
The number of processes belonging to this cgroup killed by any
kind of OOM killer.
11. Memory Pressure
===================

View File

@ -0,0 +1,4 @@
===============
Misc controller
===============
Please refer "Misc" documentation in Documentation/admin-guide/cgroup-v2.rst

View File

@ -65,8 +65,11 @@ v1 is available under :ref:`Documentation/admin-guide/cgroup-v1/index.rst <cgrou
5-7-1. RDMA Interface Files
5-8. HugeTLB
5.8-1. HugeTLB Interface Files
5-8. Misc
5-8-1. perf_event
5-9. Misc
5.9-1 Miscellaneous cgroup Interface Files
5.9-2 Migration and Ownership
5-10. Others
5-10-1. perf_event
5-N. Non-normative information
5-N-1. CPU controller root cgroup process behaviour
5-N-2. IO controller root cgroup process behaviour
@ -2171,6 +2174,72 @@ HugeTLB Interface Files
Misc
----
The Miscellaneous cgroup provides the resource limiting and tracking
mechanism for the scalar resources which cannot be abstracted like the other
cgroup resources. Controller is enabled by the CONFIG_CGROUP_MISC config
option.
A resource can be added to the controller via enum misc_res_type{} in the
include/linux/misc_cgroup.h file and the corresponding name via misc_res_name[]
in the kernel/cgroup/misc.c file. Provider of the resource must set its
capacity prior to using the resource by calling misc_cg_set_capacity().
Once a capacity is set then the resource usage can be updated using charge and
uncharge APIs. All of the APIs to interact with misc controller are in
include/linux/misc_cgroup.h.
Misc Interface Files
~~~~~~~~~~~~~~~~~~~~
Miscellaneous controller provides 3 interface files. If two misc resources (res_a and res_b) are registered then:
misc.capacity
A read-only flat-keyed file shown only in the root cgroup. It shows
miscellaneous scalar resources available on the platform along with
their quantities::
$ cat misc.capacity
res_a 50
res_b 10
misc.current
A read-only flat-keyed file shown in the non-root cgroups. It shows
the current usage of the resources in the cgroup and its children.::
$ cat misc.current
res_a 3
res_b 0
misc.max
A read-write flat-keyed file shown in the non root cgroups. Allowed
maximum usage of the resources in the cgroup and its children.::
$ cat misc.max
res_a max
res_b 4
Limit can be set by::
# echo res_a 1 > misc.max
Limit can be set to max by::
# echo res_a max > misc.max
Limits can be set higher than the capacity value in the misc.capacity
file.
Migration and Ownership
~~~~~~~~~~~~~~~~~~~~~~~
A miscellaneous scalar resource is charged to the cgroup in which it is used
first, and stays charged to that cgroup until that resource is freed. Migrating
a process to a different cgroup does not move the charge to the destination
cgroup where the process has moved.
Others
------
perf_event
~~~~~~~~~~

View File

@ -714,6 +714,7 @@ DebugData Displays information about active CIFS sessions and
version.
Stats Lists summary resource usage information as well as per
share statistics.
open_files List all the open file handles on all active SMB sessions.
======================= =======================================================
Configuration pseudo-files:
@ -794,6 +795,8 @@ LinuxExtensionsEnabled If set to one then the client will attempt to
support and want to map the uid and gid fields
to values supplied at mount (rather than the
actual values, then set this to zero. (default 1)
dfscache List the content of the DFS cache.
If set to 0, the client will clear the cache.
======================= =======================================================
These experimental features and tracing can be enabled by changing flags in

View File

@ -4,7 +4,7 @@
1 char Memory devices
1 = /dev/mem Physical memory access
2 = /dev/kmem Kernel virtual memory access
2 = /dev/kmem OBSOLETE - replaced by /proc/kcore
3 = /dev/null Null device
4 = /dev/port I/O port access
5 = /dev/zero Null byte source
@ -289,7 +289,7 @@
152 = /dev/kpoll Kernel Poll Driver
153 = /dev/mergemem Memory merge device
154 = /dev/pmu Macintosh PowerBook power manager
155 = /dev/isictl MultiTech ISICom serial control
155 =
156 = /dev/lcd Front panel LCD display
157 = /dev/ac Applicom Intl Profibus card
158 = /dev/nwbutton Netwinder external button
@ -477,11 +477,6 @@
18 block Sanyo CD-ROM
0 = /dev/sjcd Sanyo CD-ROM
19 char Cyclades serial card
0 = /dev/ttyC0 First Cyclades port
...
31 = /dev/ttyC31 32nd Cyclades port
19 block "Double" compressed disk
0 = /dev/double0 First compressed disk
...
@ -493,11 +488,6 @@
See the Double documentation for the meaning of the
mirror devices.
20 char Cyclades serial card - alternate devices
0 = /dev/cub0 Callout device for ttyC0
...
31 = /dev/cub31 Callout device for ttyC31
20 block Hitachi CD-ROM (under development)
0 = /dev/hitcd Hitachi CD-ROM

View File

@ -347,7 +347,7 @@ Examples
<debugfs>/dynamic_debug/control
// enable messages in files of which the paths include string "usb"
nullarbor:~ # echo -n '*usb* +p' > <debugfs>/dynamic_debug/control
nullarbor:~ # echo -n 'file *usb* +p' > <debugfs>/dynamic_debug/control
// enable all messages
nullarbor:~ # echo -n '+p' > <debugfs>/dynamic_debug/control

View File

@ -17,17 +17,18 @@ module.
gpio_mockup_ranges
This parameter takes an argument in the form of an array of integer
pairs. Each pair defines the base GPIO number (if any) and the number
of lines exposed by the chip. If the base GPIO is -1, the gpiolib
will assign it automatically.
pairs. Each pair defines the base GPIO number (non-negative integer)
and the first number after the last of this chip. If the base GPIO
is -1, the gpiolib will assign it automatically. while the following
parameter is the number of lines exposed by the chip.
Example: gpio_mockup_ranges=-1,8,-1,16,405,4
Example: gpio_mockup_ranges=-1,8,-1,16,405,409
The line above creates three chips. The first one will expose 8 lines,
the second 16 and the third 4. The base GPIO for the third chip is set
to 405 while for two first chips it will be assigned automatically.
gpio_named_lines
gpio_mockup_named_lines
This parameter doesn't take any arguments. It lets the driver know that
GPIO lines exposed by it should be named.

View File

@ -35,7 +35,6 @@ problems and bugs in particular.
:maxdepth: 1
reporting-issues
Reporting bugs (obsolete) <reporting-bugs>
security-bugs
bug-hunting
bug-bisect

View File

@ -68,6 +68,13 @@ For example one can add to the command line following parameter:
where the final item represents CPUs 100,101,125,126,150,151,...
The value "N" can be used to represent the numerically last CPU on the system,
i.e "foo_cpus=16-N" would be equivalent to "16-31" on a 32 core system.
Keep in mind that "N" is dynamic, so if system changes cause the bitmap width
to change, such as less cores in the CPU list, then N and any ranges using N
will also change. Use the same on a small 4 core system, and "16-N" becomes
"16-3" and now the same boot input will be flagged as invalid (start > end).
This document may not be entirely up to date and comprehensive. The command
@ -140,6 +147,7 @@ parameter is applicable::
PPT Parallel port support is enabled.
PS2 Appropriate PS/2 support is enabled.
RAM RAM disk support is enabled.
RISCV RISCV architecture is enabled.
RDT Intel Resource Director Technology.
S390 S390 architecture is enabled.
SCSI Appropriate SCSI support is enabled.

View File

@ -50,7 +50,7 @@
CONFIG_ACPI_DEBUG must be enabled to produce any ACPI
debug output. Bits in debug_layer correspond to a
_COMPONENT in an ACPI source file, e.g.,
#define _COMPONENT ACPI_PCI_COMPONENT
#define _COMPONENT ACPI_EVENTS
Bits in debug_level correspond to a level in
ACPI_DEBUG_PRINT statements, e.g.,
ACPI_DEBUG_PRINT((ACPI_DB_INFO, ...
@ -60,8 +60,6 @@
Enable processor driver info messages:
acpi.debug_layer=0x20000000
Enable PCI/PCI interrupt routing info messages:
acpi.debug_layer=0x400000
Enable AML "Debug" output, i.e., stores to the Debug
object while interpreting AML:
acpi.debug_layer=0xffffffff acpi.debug_level=0x2
@ -784,6 +782,16 @@
cs89x0_media= [HW,NET]
Format: { rj45 | aui | bnc }
csdlock_debug= [KNL] Enable debug add-ons of cross-CPU function call
handling. When switched on, additional debug data is
printed to the console in case a hanging CPU is
detected, and that CPU is pinged again in order to try
to resolve the hang situation.
0: disable csdlock debugging (default)
1: enable basic csdlock debugging (minor impact)
ext: enable extended csdlock debugging (more impact,
but more data)
dasd= [HW,NET]
See header of drivers/s390/block/dasd_devmap.c.
@ -1461,6 +1469,12 @@
Don't use this when you are not running on the
android emulator
gpio-mockup.gpio_mockup_ranges
[HW] Sets the ranges of gpiochip of for this device.
Format: <start1>,<end1>,<start2>,<end2>...
gpio-mockup.gpio_mockup_named_lines
[HW] Let the driver know GPIO lines should be named.
gpt [EFI] Forces disk with valid GPT signature but
invalid Protective MBR to be treated as GPT. If the
primary GPT is corrupted, it enables the backup/alternate
@ -1484,10 +1498,6 @@
Format: <unsigned int> such that (rxsize & ~0x1fffc0) == 0.
Default: 1024
gpio-mockup.gpio_mockup_ranges
[HW] Sets the ranges of gpiochip of for this device.
Format: <start1>,<end1>,<start2>,<end2>...
hardlockup_all_cpu_backtrace=
[KNL] Should the hard-lockup detector generate
backtraces on all cpus.
@ -1825,6 +1835,18 @@
initcall functions. Useful for debugging built-in
modules and initcalls.
initramfs_async= [KNL]
Format: <bool>
Default: 1
This parameter controls whether the initramfs
image is unpacked asynchronously, concurrently
with devices being probed and
initialized. This should normally just work,
but as a debugging aid, one can get the
historical behaviour of the initramfs
unpacking being completed before device_ and
late_ initcalls.
initrd= [BOOT] Specify the location of the initial ramdisk
initrdmem= [KNL] Specify a physical address and size from which to
@ -2280,8 +2302,7 @@
state is kept private from the host.
Not valid if the kernel is running in EL2.
Defaults to VHE/nVHE based on hardware support and
the value of CONFIG_ARM64_VHE.
Defaults to VHE/nVHE based on hardware support.
kvm-arm.vgic_v3_group0_trap=
[KVM,ARM] Trap guest accesses to GICv3 group-0
@ -2795,7 +2816,24 @@
seconds. Use this parameter to check at some
other rate. 0 disables periodic checking.
memtest= [KNL,X86,ARM,PPC] Enable memtest
memory_hotplug.memmap_on_memory
[KNL,X86,ARM] Boolean flag to enable this feature.
Format: {on | off (default)}
When enabled, runtime hotplugged memory will
allocate its internal metadata (struct pages)
from the hotadded memory which will allow to
hotadd a lot of memory without requiring
additional memory to do so.
This feature is disabled by default because it
has some implication on large (e.g. GB)
allocations in some configurations (e.g. small
memory blocks).
The state of the flag can be read in
/sys/module/memory_hotplug/parameters/memmap_on_memory.
Note that even when enabled, there are a few cases where
the feature is not effective.
memtest= [KNL,X86,ARM,PPC,RISCV] Enable memtest
Format: <integer>
default : 0 <disable>
Specifies the number of memtest passes to be
@ -3244,6 +3282,8 @@
nohugeiomap [KNL,X86,PPC,ARM64] Disable kernel huge I/O mappings.
nohugevmalloc [PPC] Disable kernel huge vmalloc mappings.
nosmt [KNL,S390] Disable symmetric multithreading (SMT).
Equivalent to smt=1.
@ -3473,7 +3513,8 @@
nr_uarts= [SERIAL] maximum number of UARTs to be registered.
numa_balancing= [KNL,X86] Enable or disable automatic NUMA balancing.
numa_balancing= [KNL,ARM64,PPC,RISCV,S390,X86] Enable or disable automatic
NUMA balancing.
Allowed values are enable and disable
numa_zonelist_order= [KNL, BOOT] Select zonelist order for NUMA.
@ -3593,6 +3634,96 @@
Currently this function knows 686a and 8231 chips.
Format: [spp|ps2|epp|ecp|ecpepp]
pata_legacy.all= [HW,LIBATA]
Format: <int>
Set to non-zero to probe primary and secondary ISA
port ranges on PCI systems where no PCI PATA device
has been found at either range. Disabled by default.
pata_legacy.autospeed= [HW,LIBATA]
Format: <int>
Set to non-zero if a chip is present that snoops speed
changes. Disabled by default.
pata_legacy.ht6560a= [HW,LIBATA]
Format: <int>
Set to 1, 2, or 3 for HT 6560A on the primary channel,
the secondary channel, or both channels respectively.
Disabled by default.
pata_legacy.ht6560b= [HW,LIBATA]
Format: <int>
Set to 1, 2, or 3 for HT 6560B on the primary channel,
the secondary channel, or both channels respectively.
Disabled by default.
pata_legacy.iordy_mask= [HW,LIBATA]
Format: <int>
IORDY enable mask. Set individual bits to allow IORDY
for the respective channel. Bit 0 is for the first
legacy channel handled by this driver, bit 1 is for
the second channel, and so on. The sequence will often
correspond to the primary legacy channel, the secondary
legacy channel, and so on, but the handling of a PCI
bus and the use of other driver options may interfere
with the sequence. By default IORDY is allowed across
all channels.
pata_legacy.opti82c46x= [HW,LIBATA]
Format: <int>
Set to 1, 2, or 3 for Opti 82c611A on the primary
channel, the secondary channel, or both channels
respectively. Disabled by default.
pata_legacy.opti82c611a= [HW,LIBATA]
Format: <int>
Set to 1, 2, or 3 for Opti 82c465MV on the primary
channel, the secondary channel, or both channels
respectively. Disabled by default.
pata_legacy.pio_mask= [HW,LIBATA]
Format: <int>
PIO mode mask for autospeed devices. Set individual
bits to allow the use of the respective PIO modes.
Bit 0 is for mode 0, bit 1 is for mode 1, and so on.
All modes allowed by default.
pata_legacy.probe_all= [HW,LIBATA]
Format: <int>
Set to non-zero to probe tertiary and further ISA
port ranges on PCI systems. Disabled by default.
pata_legacy.probe_mask= [HW,LIBATA]
Format: <int>
Probe mask for legacy ISA PATA ports. Depending on
platform configuration and the use of other driver
options up to 6 legacy ports are supported: 0x1f0,
0x170, 0x1e8, 0x168, 0x1e0, 0x160, however probing
of individual ports can be disabled by setting the
corresponding bits in the mask to 1. Bit 0 is for
the first port in the list above (0x1f0), and so on.
By default all supported ports are probed.
pata_legacy.qdi= [HW,LIBATA]
Format: <int>
Set to non-zero to probe QDI controllers. By default
set to 1 if CONFIG_PATA_QDI_MODULE, 0 otherwise.
pata_legacy.winbond= [HW,LIBATA]
Format: <int>
Set to non-zero to probe Winbond controllers. Use
the standard I/O port (0x130) if 1, otherwise the
value given is the I/O port to use (typically 0x1b0).
By default set to 1 if CONFIG_PATA_WINBOND_VLB_MODULE,
0 otherwise.
pata_platform.pio_mask= [HW,LIBATA]
Format: <int>
Supported PIO mode mask. Set individual bits to allow
the use of the respective PIO modes. Bit 0 is for
mode 0, bit 1 is for mode 1, and so on. Mode 0 only
allowed by default.
pause_on_oops=
Halt all CPUs after the first oops has been printed for
the specified number of seconds. This is to be used if
@ -4062,6 +4193,17 @@
fully seed the kernel's CRNG. Default is controlled
by CONFIG_RANDOM_TRUST_CPU.
randomize_kstack_offset=
[KNL] Enable or disable kernel stack offset
randomization, which provides roughly 5 bits of
entropy, frustrating memory corruption attacks
that depend on stack address determinism or
cross-syscall address exposures. This is only
available on architectures that have defined
CONFIG_HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET.
Format: <bool> (1/Y/y=enable, 0/N/n=disable)
Default is CONFIG_RANDOMIZE_KSTACK_OFFSET_DEFAULT.
ras=option[,option,...] [KNL] RAS-specific options
cec_disable [X86]
@ -4069,9 +4211,7 @@
see CONFIG_RAS_CEC help text.
rcu_nocbs= [KNL]
The argument is a cpu list, as described above,
except that the string "all" can be used to
specify every CPU on the system.
The argument is a cpu list, as described above.
In kernels built with CONFIG_RCU_NOCB_CPU=y, set
the specified list of CPUs to be no-callback CPUs.
@ -4260,6 +4400,18 @@
rcuscale.kfree_rcu_test= [KNL]
Set to measure performance of kfree_rcu() flooding.
rcuscale.kfree_rcu_test_double= [KNL]
Test the double-argument variant of kfree_rcu().
If this parameter has the same value as
rcuscale.kfree_rcu_test_single, both the single-
and double-argument variants are tested.
rcuscale.kfree_rcu_test_single= [KNL]
Test the single-argument variant of kfree_rcu().
If this parameter has the same value as
rcuscale.kfree_rcu_test_double, both the single-
and double-argument variants are tested.
rcuscale.kfree_nthreads= [KNL]
The number of threads running loops of kfree_rcu().
@ -4726,7 +4878,7 @@
sbni= [NET] Granch SBNI12 leased line adapter
sched_debug [KNL] Enables verbose scheduler debug messages.
sched_verbose [KNL] Enables verbose scheduler debug messages.
schedstats= [KNL,X86] Enable or disable scheduled statistics.
Allowed values are enable and disable. This feature
@ -4878,6 +5030,10 @@
slram= [HW,MTD]
slab_merge [MM]
Enable merging of slabs with similar size when the
kernel is built without CONFIG_SLAB_MERGE_DEFAULT.
slab_nomerge [MM]
Disable merging of slabs with similar size. May be
necessary if there is some reason to distinguish
@ -4925,6 +5081,9 @@
lower than slub_max_order.
For more information see Documentation/vm/slub.rst.
slub_merge [MM, SLUB]
Same with slab_merge.
slub_nomerge [MM, SLUB]
Same with slab_nomerge. This is supported for legacy.
See slab_nomerge for more information.
@ -5101,27 +5260,37 @@
spia_peddr=
split_lock_detect=
[X86] Enable split lock detection
[X86] Enable split lock detection or bus lock detection
When enabled (and if hardware support is present), atomic
instructions that access data across cache line
boundaries will result in an alignment check exception.
boundaries will result in an alignment check exception
for split lock detection or a debug exception for
bus lock detection.
off - not enabled
warn - the kernel will emit rate limited warnings
warn - the kernel will emit rate-limited warnings
about applications triggering the #AC
exception. This mode is the default on CPUs
that supports split lock detection.
exception or the #DB exception. This mode is
the default on CPUs that support split lock
detection or bus lock detection. Default
behavior is by #AC if both features are
enabled in hardware.
fatal - the kernel will send SIGBUS to applications
that trigger the #AC exception.
that trigger the #AC exception or the #DB
exception. Default behavior is by #AC if
both features are enabled in hardware.
If an #AC exception is hit in the kernel or in
firmware (i.e. not while executing in user mode)
the kernel will oops in either "warn" or "fatal"
mode.
#DB exception for bus lock is triggered only when
CPL > 0.
srbds= [X86,INTEL]
Control the Special Register Buffer Data Sampling
(SRBDS) mitigation.
@ -5463,6 +5632,18 @@
See Documentation/admin-guide/mm/transhuge.rst
for more details.
trusted.source= [KEYS]
Format: <string>
This parameter identifies the trust source as a backend
for trusted keys implementation. Supported trust
sources:
- "tpm"
- "tee"
If not specified then it defaults to iterating through
the trust source list starting with TPM and assigns the
first trust source as a backend which is initialized
successfully during iteration.
tsc= Disable clocksource stability checks for TSC.
Format: <string>
[x86] reliable: mark tsc clocksource as reliable, this

View File

@ -332,23 +332,3 @@ To reduce its OS jitter, do at least one of the following:
kthreads from being created in the first place. However, please
note that this will not eliminate OS jitter, but will instead
shift it to RCU_SOFTIRQ.
Name:
watchdog/%u
Purpose:
Detect software lockups on each CPU.
To reduce its OS jitter, do at least one of the following:
1. Build with CONFIG_LOCKUP_DETECTOR=n, which will prevent these
kthreads from being created in the first place.
2. Boot with "nosoftlockup=0", which will also prevent these kthreads
from being created. Other related watchdog and softlockup boot
parameters may be found in Documentation/admin-guide/kernel-parameters.rst
and Documentation/watchdog/watchdog-parameters.rst.
3. Echo a zero to /proc/sys/kernel/watchdog to disable the
watchdog timer.
4. Echo a large number of /proc/sys/kernel/watchdog_thresh in
order to reduce the frequency of OS jitter due to the watchdog
timer down to a level that is acceptable for your workload.

View File

@ -52,6 +52,7 @@ detailed description):
- LCD Shadow (PrivacyGuard) enable and disable
- Lap mode sensor
- Setting keyboard language
- WWAN Antenna type
A compatibility table by model and feature is maintained on the web
site, http://ibm-acpi.sf.net/. I appreciate any success or failure
@ -1490,6 +1491,25 @@ fr(French), fr-ch(French(Switzerland)), hu(Hungarian), it(Italy), jp (Japan),
nl(Dutch), nn(Norway), pl(Polish), pt(portugese), sl(Slovenian), sv(Sweden),
tr(Turkey)
WWAN Antenna type
-----------------
sysfs: wwan_antenna_type
On some newer Thinkpads we need to set SAR value based on the antenna
type. This interface will be used by userspace to get the antenna type
and set the corresponding SAR value, as is required for FCC certification.
The available commands are::
cat /sys/devices/platform/thinkpad_acpi/wwan_antenna_type
Currently 2 antenna types are supported as mentioned below:
- type a
- type b
The property is read-only. If the platform doesn't have support the sysfs
class is not created.
Adaptive keyboard
-----------------

View File

@ -357,6 +357,15 @@ creates ZONE_MOVABLE as following.
Unfortunately, there is no information to show which memory block belongs
to ZONE_MOVABLE. This is TBD.
.. note::
Techniques that rely on long-term pinnings of memory (especially, RDMA and
vfio) are fundamentally problematic with ZONE_MOVABLE and, therefore, memory
hot remove. Pinned pages cannot reside on ZONE_MOVABLE, to guarantee that
memory can still get hot removed - be aware that pinning can fail even if
there is plenty of free memory in ZONE_MOVABLE. In addition, using
ZONE_MOVABLE might make page pinning more expensive, because pages have to be
migrated off that zone first.
.. _memory_hotplug_how_to_offline_memory:
How to offline memory

View File

@ -151,7 +151,7 @@ Each cache level's directory provides its attributes. For example, the
following shows a single cache level and the attributes available for
software to query::
# tree sys/devices/system/node/node0/memory_side_cache/
# tree /sys/devices/system/node/node0/memory_side_cache/
/sys/devices/system/node/node0/memory_side_cache/
|-- index1
| |-- indexing

View File

@ -402,7 +402,7 @@ compact_fail
but failed.
It is possible to establish how long the stalls were using the function
tracer to record how long was spent in __alloc_pages_nodemask and
tracer to record how long was spent in __alloc_pages() and
using the mm_page_alloc tracepoint to identify which allocations were
for huge pages.

View File

@ -63,36 +63,36 @@ the generic ioctl available.
The ``uffdio_api.features`` bitmask returned by the ``UFFDIO_API`` ioctl
defines what memory types are supported by the ``userfaultfd`` and what
events, except page fault notifications, may be generated.
events, except page fault notifications, may be generated:
If the kernel supports registering ``userfaultfd`` ranges on hugetlbfs
virtual memory areas, ``UFFD_FEATURE_MISSING_HUGETLBFS`` will be set in
``uffdio_api.features``. Similarly, ``UFFD_FEATURE_MISSING_SHMEM`` will be
set if the kernel supports registering ``userfaultfd`` ranges on shared
memory (covering all shmem APIs, i.e. tmpfs, ``IPCSHM``, ``/dev/zero``,
``MAP_SHARED``, ``memfd_create``, etc).
- The ``UFFD_FEATURE_EVENT_*`` flags indicate that various other events
other than page faults are supported. These events are described in more
detail below in the `Non-cooperative userfaultfd`_ section.
The userland application that wants to use ``userfaultfd`` with hugetlbfs
or shared memory need to set the corresponding flag in
``uffdio_api.features`` to enable those features.
- ``UFFD_FEATURE_MISSING_HUGETLBFS`` and ``UFFD_FEATURE_MISSING_SHMEM``
indicate that the kernel supports ``UFFDIO_REGISTER_MODE_MISSING``
registrations for hugetlbfs and shared memory (covering all shmem APIs,
i.e. tmpfs, ``IPCSHM``, ``/dev/zero``, ``MAP_SHARED``, ``memfd_create``,
etc) virtual memory areas, respectively.
If the userland desires to receive notifications for events other than
page faults, it has to verify that ``uffdio_api.features`` has appropriate
``UFFD_FEATURE_EVENT_*`` bits set. These events are described in more
detail below in `Non-cooperative userfaultfd`_ section.
- ``UFFD_FEATURE_MINOR_HUGETLBFS`` indicates that the kernel supports
``UFFDIO_REGISTER_MODE_MINOR`` registration for hugetlbfs virtual memory
areas.
Once the ``userfaultfd`` has been enabled the ``UFFDIO_REGISTER`` ioctl should
be invoked (if present in the returned ``uffdio_api.ioctls`` bitmask) to
register a memory range in the ``userfaultfd`` by setting the
The userland application should set the feature flags it intends to use
when invoking the ``UFFDIO_API`` ioctl, to request that those features be
enabled if supported.
Once the ``userfaultfd`` API has been enabled the ``UFFDIO_REGISTER``
ioctl should be invoked (if present in the returned ``uffdio_api.ioctls``
bitmask) to register a memory range in the ``userfaultfd`` by setting the
uffdio_register structure accordingly. The ``uffdio_register.mode``
bitmask will specify to the kernel which kind of faults to track for
the range (``UFFDIO_REGISTER_MODE_MISSING`` would track missing
pages). The ``UFFDIO_REGISTER`` ioctl will return the
the range. The ``UFFDIO_REGISTER`` ioctl will return the
``uffdio_register.ioctls`` bitmask of ioctls that are suitable to resolve
userfaults on the range registered. Not all ioctls will necessarily be
supported for all memory types depending on the underlying virtual
memory backend (anonymous memory vs tmpfs vs real filebacked
mappings).
supported for all memory types (e.g. anonymous memory vs. shmem vs.
hugetlbfs), or all types of intercepted faults.
Userland can use the ``uffdio_register.ioctls`` to manage the virtual
address space in the background (to add or potentially also remove
@ -100,21 +100,46 @@ memory from the ``userfaultfd`` registered range). This means a userfault
could be triggering just before userland maps in the background the
user-faulted page.
The primary ioctl to resolve userfaults is ``UFFDIO_COPY``. That
atomically copies a page into the userfault registered range and wakes
up the blocked userfaults
(unless ``uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE`` is set).
Other ioctl works similarly to ``UFFDIO_COPY``. They're atomic as in
guaranteeing that nothing can see an half copied page since it'll
keep userfaulting until the copy has finished.
Resolving Userfaults
--------------------
There are three basic ways to resolve userfaults:
- ``UFFDIO_COPY`` atomically copies some existing page contents from
userspace.
- ``UFFDIO_ZEROPAGE`` atomically zeros the new page.
- ``UFFDIO_CONTINUE`` maps an existing, previously-populated page.
These operations are atomic in the sense that they guarantee nothing can
see a half-populated page, since readers will keep userfaulting until the
operation has finished.
By default, these wake up userfaults blocked on the range in question.
They support a ``UFFDIO_*_MODE_DONTWAKE`` ``mode`` flag, which indicates
that waking will be done separately at some later time.
Which ioctl to choose depends on the kind of page fault, and what we'd
like to do to resolve it:
- For ``UFFDIO_REGISTER_MODE_MISSING`` faults, the fault needs to be
resolved by either providing a new page (``UFFDIO_COPY``), or mapping
the zero page (``UFFDIO_ZEROPAGE``). By default, the kernel would map
the zero page for a missing fault. With userfaultfd, userspace can
decide what content to provide before the faulting thread continues.
- For ``UFFDIO_REGISTER_MODE_MINOR`` faults, there is an existing page (in
the page cache). Userspace has the option of modifying the page's
contents before resolving the fault. Once the contents are correct
(modified or not), userspace asks the kernel to map the page and let the
faulting thread continue with ``UFFDIO_CONTINUE``.
Notes:
- If you requested ``UFFDIO_REGISTER_MODE_MISSING`` when registering then
you must provide some kind of page in your thread after reading from
the uffd. You must provide either ``UFFDIO_COPY`` or ``UFFDIO_ZEROPAGE``.
The normal behavior of the OS automatically providing a zero page on
an anonymous mmaping is not in place.
- You can tell which kind of fault occurred by examining
``pagefault.flags`` within the ``uffd_msg``, checking for the
``UFFD_PAGEFAULT_FLAG_*`` flags.
- None of the page-delivering ioctls default to the range that you
registered with. You must fill in all fields for the appropriate
@ -122,9 +147,9 @@ Notes:
- You get the address of the access that triggered the missing page
event out of a struct uffd_msg that you read in the thread from the
uffd. You can supply as many pages as you want with ``UFFDIO_COPY`` or
``UFFDIO_ZEROPAGE``. Keep in mind that unless you used DONTWAKE then
the first of any of those IOCTLs wakes up the faulting thread.
uffd. You can supply as many pages as you want with these IOCTLs.
Keep in mind that unless you used DONTWAKE then the first of any of
those IOCTLs wakes up the faulting thread.
- Be sure to test for all errors including
(``pollfd[0].revents & POLLERR``). This can happen, e.g. when ranges

View File

@ -53,6 +53,60 @@ Example usage of perf::
$# perf stat -a -e hisi_sccl3_l3c0/rd_hit_cpipe/ sleep 5
$# perf stat -a -e hisi_sccl3_l3c0/config=0x02/ sleep 5
For HiSilicon uncore PMU v2 whose identifier is 0x30, the topology is the same
as PMU v1, but some new functions are added to the hardware.
(a) L3C PMU supports filtering by core/thread within the cluster which can be
specified as a bitmap::
$# perf stat -a -e hisi_sccl3_l3c0/config=0x02,tt_core=0x3/ sleep 5
This will only count the operations from core/thread 0 and 1 in this cluster.
(b) Tracetag allow the user to chose to count only read, write or atomic
operations via the tt_req parameeter in perf. The default value counts all
operations. tt_req is 3bits, 3'b100 represents read operations, 3'b101
represents write operations, 3'b110 represents atomic store operations and
3'b111 represents atomic non-store operations, other values are reserved::
$# perf stat -a -e hisi_sccl3_l3c0/config=0x02,tt_req=0x4/ sleep 5
This will only count the read operations in this cluster.
(c) Datasrc allows the user to check where the data comes from. It is 5 bits.
Some important codes are as follows:
5'b00001: comes from L3C in this die;
5'b01000: comes from L3C in the cross-die;
5'b01001: comes from L3C which is in another socket;
5'b01110: comes from the local DDR;
5'b01111: comes from the cross-die DDR;
5'b10000: comes from cross-socket DDR;
etc, it is mainly helpful to find that the data source is nearest from the CPU
cores. If datasrc_cfg is used in the multi-chips, the datasrc_skt shall be
configured in perf command::
$# perf stat -a -e hisi_sccl3_l3c0/config=0xb9,datasrc_cfg=0xE/,
hisi_sccl3_l3c0/config=0xb9,datasrc_cfg=0xF/ sleep 5
(d)Some HiSilicon SoCs encapsulate multiple CPU and IO dies. Each CPU die
contains several Compute Clusters (CCLs). The I/O dies are called Super I/O
clusters (SICL) containing multiple I/O clusters (ICLs). Each CCL/ICL in the
SoC has a unique ID. Each ID is 11bits, include a 6-bit SCCL-ID and 5-bit
CCL/ICL-ID. For I/O die, the ICL-ID is followed by:
5'b00000: I/O_MGMT_ICL;
5'b00001: Network_ICL;
5'b00011: HAC_ICL;
5'b10000: PCIe_ICL;
Users could configure IDs to count data come from specific CCL/ICL, by setting
srcid_cmd & srcid_msk, and data desitined for specific CCL/ICL by setting
tgtid_cmd & tgtid_msk. A set bit in srcid_msk/tgtid_msk means the PMU will not
check the bit when matching against the srcid_cmd/tgtid_cmd.
If all of these options are disabled, it can works by the default value that
doesn't distinguish the filter condition and ID information and will return
the total counter values in the PMU counters.
The current driver does not support sampling. So "perf record" is unsupported.
Also attach to a task is unsupported as the events are all uncore.

View File

@ -3,7 +3,7 @@ Ramoops oops/panic logger
Sergiu Iordache <sergiu@chromium.org>
Updated: 17 November 2011
Updated: 10 Feb 2021
Introduction
------------
@ -30,6 +30,8 @@ mapping to pgprot_writecombine. Setting ``mem_type=1`` attempts to use
depends on atomic operations. At least on ARM, pgprot_noncached causes the
memory to be mapped strongly ordered, and atomic operations on strongly ordered
memory are implementation defined, and won't work on many ARMs such as omaps.
Setting ``mem_type=2`` attempts to treat the memory region as normal memory,
which enables full cache on it. This can improve the performance.
The memory area is divided into ``record_size`` chunks (also rounded down to
power of two) and each kmesg dump writes a ``record_size`` chunk of

File diff suppressed because it is too large Load Diff

View File

@ -483,10 +483,11 @@ modprobe
========
The full path to the usermode helper for autoloading kernel modules,
by default "/sbin/modprobe". This binary is executed when the kernel
requests a module. For example, if userspace passes an unknown
filesystem type to mount(), then the kernel will automatically request
the corresponding filesystem module by executing this usermode helper.
by default ``CONFIG_MODPROBE_PATH``, which in turn defaults to
"/sbin/modprobe". This binary is executed when the kernel requests a
module. For example, if userspace passes an unknown filesystem type
to mount(), then the kernel will automatically request the
corresponding filesystem module by executing this usermode helper.
This usermode helper should insert the needed module into the kernel.
This sysctl only affects module autoloading. It has no effect on the
@ -1457,11 +1458,22 @@ unprivileged_bpf_disabled
=========================
Writing 1 to this entry will disable unprivileged calls to ``bpf()``;
once disabled, calling ``bpf()`` without ``CAP_SYS_ADMIN`` will return
``-EPERM``.
once disabled, calling ``bpf()`` without ``CAP_SYS_ADMIN`` or ``CAP_BPF``
will return ``-EPERM``. Once set to 1, this can't be cleared from the
running kernel anymore.
Once set, this can't be cleared.
Writing 2 to this entry will also disable unprivileged calls to ``bpf()``,
however, an admin can still change this setting later on, if needed, by
writing 0 or 1 to this entry.
If ``BPF_UNPRIV_DEFAULT_OFF`` is enabled in the kernel config, then this
entry will default to 2 instead of 0.
= =============================================================
0 Unprivileged calls to ``bpf()`` are enabled
1 Unprivileged calls to ``bpf()`` are disabled without recovery
2 Unprivileged calls to ``bpf()`` are disabled
= =============================================================
watchdog
========

View File

@ -64,6 +64,7 @@ two flavors of JITs, the newer eBPF JIT currently supported on:
- arm64
- arm32
- ppc64
- ppc32
- sparc64
- mips64
- s390x
@ -73,7 +74,6 @@ two flavors of JITs, the newer eBPF JIT currently supported on:
And the older cBPF JIT supported on the following archs:
- mips
- ppc
- sparc
eBPF JITs are a superset of cBPF JITs, meaning the kernel will
@ -311,6 +311,17 @@ permit to distribute the load on several cpus.
If set to 1 (default), timestamps are sampled as soon as possible, before
queueing.
netdev_unregister_timeout_secs
------------------------------
Unregister network device timeout in seconds.
This option controls the timeout (in seconds) used to issue a warning while
waiting for a network device refcount to drop to 0 during device
unregistration. A lower value may be useful during bisection to detect
a leaked reference faster. A larger value may be useful to prevent false
warnings on slow/loaded systems.
Default value is 10, minimum 1, maximum 3600.
optmem_max
----------

View File

@ -90,8 +90,8 @@ Command Function
``b`` Will immediately reboot the system without syncing or unmounting
your disks.
``c`` Will perform a system crash by a NULL pointer dereference.
A crashdump will be taken if configured.
``c`` Will perform a system crash and a crashdump will be taken
if configured.
``d`` Shows all locks that are held.

26
Documentation/arch.rst Normal file
View File

@ -0,0 +1,26 @@
.. SPDX-License-Identifier: GPL-2.0
CPU Architectures
=================
These books provide programming details about architecture-specific
implementation.
.. toctree::
:maxdepth: 2
arm/index
arm64/index
ia64/index
m68k/index
mips/index
nios2/index
openrisc/index
parisc/index
powerpc/index
riscv/index
s390/index
sh/index
sparc/index
x86/index
xtensa/index

View File

@ -52,6 +52,7 @@ SoC-specific documents
stm32/stm32f746-overview
stm32/overview
stm32/stm32h743-overview
stm32/stm32h750-overview
stm32/stm32f769-overview
stm32/stm32f429-overview
stm32/stm32mp157-overview

View File

@ -18,12 +18,12 @@ Orion family
- 88F5181L
- 88F5182
- Datasheet: http://www.embeddedarm.com/documentation/third-party/MV88F5182-datasheet.pdf
- Programmer's User Guide: http://www.embeddedarm.com/documentation/third-party/MV88F5182-opensource-manual.pdf
- User Manual: http://www.embeddedarm.com/documentation/third-party/MV88F5182-usermanual.pdf
- Datasheet: https://web.archive.org/web/20210124231420/http://csclub.uwaterloo.ca/~board/ts7800/MV88F5182-datasheet.pdf
- Programmer's User Guide: https://web.archive.org/web/20210124231536/http://csclub.uwaterloo.ca/~board/ts7800/MV88F5182-opensource-manual.pdf
- User Manual: https://web.archive.org/web/20210124231631/http://csclub.uwaterloo.ca/~board/ts7800/MV88F5182-usermanual.pdf
- 88F5281
- Datasheet: http://www.ocmodshop.com/images/reviews/networking/qnap_ts409u/marvel_88f5281_data_sheet.pdf
- Datasheet: https://web.archive.org/web/20131028144728/http://www.ocmodshop.com/images/reviews/networking/qnap_ts409u/marvel_88f5281_data_sheet.pdf
- 88F6183
Core:
Feroceon 88fr331 (88f51xx) or 88fr531-vd (88f52xx) ARMv5 compatible
@ -38,33 +38,33 @@ Kirkwood family
Flavors:
- 88F6282 a.k.a Armada 300
- Product Brief : http://www.marvell.com/embedded-processors/armada-300/assets/armada_310.pdf
- Product Brief : https://web.archive.org/web/20111027032509/http://www.marvell.com/embedded-processors/armada-300/assets/armada_310.pdf
- 88F6283 a.k.a Armada 310
- Product Brief : http://www.marvell.com/embedded-processors/armada-300/assets/armada_310.pdf
- Product Brief : https://web.archive.org/web/20111027032509/http://www.marvell.com/embedded-processors/armada-300/assets/armada_310.pdf
- 88F6190
- Product Brief : http://www.marvell.com/embedded-processors/kirkwood/assets/88F6190-003_WEB.pdf
- Hardware Spec : http://www.marvell.com/embedded-processors/kirkwood/assets/HW_88F619x_OpenSource.pdf
- Functional Spec: http://www.marvell.com/embedded-processors/kirkwood/assets/FS_88F6180_9x_6281_OpenSource.pdf
- Product Brief : https://web.archive.org/web/20130730072715/http://www.marvell.com/embedded-processors/kirkwood/assets/88F6190-003_WEB.pdf
- Hardware Spec : https://web.archive.org/web/20121021182835/http://www.marvell.com/embedded-processors/kirkwood/assets/HW_88F619x_OpenSource.pdf
- Functional Spec: https://web.archive.org/web/20130730091033/http://www.marvell.com/embedded-processors/kirkwood/assets/FS_88F6180_9x_6281_OpenSource.pdf
- 88F6192
- Product Brief : http://www.marvell.com/embedded-processors/kirkwood/assets/88F6192-003_ver1.pdf
- Hardware Spec : http://www.marvell.com/embedded-processors/kirkwood/assets/HW_88F619x_OpenSource.pdf
- Functional Spec: http://www.marvell.com/embedded-processors/kirkwood/assets/FS_88F6180_9x_6281_OpenSource.pdf
- Product Brief : https://web.archive.org/web/20131113121446/http://www.marvell.com/embedded-processors/kirkwood/assets/88F6192-003_ver1.pdf
- Hardware Spec : https://web.archive.org/web/20121021182835/http://www.marvell.com/embedded-processors/kirkwood/assets/HW_88F619x_OpenSource.pdf
- Functional Spec: https://web.archive.org/web/20130730091033/http://www.marvell.com/embedded-processors/kirkwood/assets/FS_88F6180_9x_6281_OpenSource.pdf
- 88F6182
- 88F6180
- Product Brief : http://www.marvell.com/embedded-processors/kirkwood/assets/88F6180-003_ver1.pdf
- Hardware Spec : http://www.marvell.com/embedded-processors/kirkwood/assets/HW_88F6180_OpenSource.pdf
- Functional Spec: http://www.marvell.com/embedded-processors/kirkwood/assets/FS_88F6180_9x_6281_OpenSource.pdf
- Product Brief : https://web.archive.org/web/20120616201621/http://www.marvell.com/embedded-processors/kirkwood/assets/88F6180-003_ver1.pdf
- Hardware Spec : https://web.archive.org/web/20130730091654/http://www.marvell.com/embedded-processors/kirkwood/assets/HW_88F6180_OpenSource.pdf
- Functional Spec: https://web.archive.org/web/20130730091033/http://www.marvell.com/embedded-processors/kirkwood/assets/FS_88F6180_9x_6281_OpenSource.pdf
- 88F6281
- Product Brief : http://www.marvell.com/embedded-processors/kirkwood/assets/88F6281-004_ver1.pdf
- Hardware Spec : http://www.marvell.com/embedded-processors/kirkwood/assets/HW_88F6281_OpenSource.pdf
- Functional Spec: http://www.marvell.com/embedded-processors/kirkwood/assets/FS_88F6180_9x_6281_OpenSource.pdf
- Product Brief : https://web.archive.org/web/20120131133709/http://www.marvell.com/embedded-processors/kirkwood/assets/88F6281-004_ver1.pdf
- Hardware Spec : https://web.archive.org/web/20120620073511/http://www.marvell.com/embedded-processors/kirkwood/assets/HW_88F6281_OpenSource.pdf
- Functional Spec: https://web.archive.org/web/20130730091033/http://www.marvell.com/embedded-processors/kirkwood/assets/FS_88F6180_9x_6281_OpenSource.pdf
Homepage:
http://www.marvell.com/embedded-processors/kirkwood/
https://web.archive.org/web/20160513194943/http://www.marvell.com/embedded-processors/kirkwood/
Core:
Feroceon 88fr131 ARMv5 compatible
Linux kernel mach directory:
@ -78,14 +78,15 @@ Discovery family
Flavors:
- MV78100
- Product Brief : http://www.marvell.com/embedded-processors/discovery-innovation/assets/MV78100-003_WEB.pdf
- Hardware Spec : http://www.marvell.com/embedded-processors/discovery-innovation/assets/HW_MV78100_OpenSource.pdf
- Functional Spec: http://www.marvell.com/embedded-processors/discovery-innovation/assets/FS_MV76100_78100_78200_OpenSource.pdf
- Product Brief : https://web.archive.org/web/20120616194711/http://www.marvell.com/embedded-processors/discovery-innovation/assets/MV78100-003_WEB.pdf
- Hardware Spec : https://web.archive.org/web/20141005120451/http://www.marvell.com/embedded-processors/discovery-innovation/assets/HW_MV78100_OpenSource.pdf
- Functional Spec: https://web.archive.org/web/20111110081125/http://www.marvell.com/embedded-processors/discovery-innovation/assets/FS_MV76100_78100_78200_OpenSource.pdf
- MV78200
- Product Brief : http://www.marvell.com/embedded-processors/discovery-innovation/assets/MV78200-002_WEB.pdf
- Hardware Spec : http://www.marvell.com/embedded-processors/discovery-innovation/assets/HW_MV78200_OpenSource.pdf
- Functional Spec: http://www.marvell.com/embedded-processors/discovery-innovation/assets/FS_MV76100_78100_78200_OpenSource.pdf
- Product Brief : https://web.archive.org/web/20140801121623/http://www.marvell.com/embedded-processors/discovery-innovation/assets/MV78200-002_WEB.pdf
- Hardware Spec : https://web.archive.org/web/20141005120458/http://www.marvell.com/embedded-processors/discovery-innovation/assets/HW_MV78200_OpenSource.pdf
- Functional Spec: https://web.archive.org/web/20111110081125/http://www.marvell.com/embedded-processors/discovery-innovation/assets/FS_MV76100_78100_78200_OpenSource.pdf
- MV76100
Not supported by the Linux kernel.
@ -106,9 +107,9 @@ EBU Armada family
- 88F6707
- 88F6W11
- Product Brief: http://www.marvell.com/embedded-processors/armada-300/assets/Marvell_ARMADA_370_SoC.pdf
- Hardware Spec: http://www.marvell.com/embedded-processors/armada-300/assets/ARMADA370-datasheet.pdf
- Functional Spec: http://www.marvell.com/embedded-processors/armada-300/assets/ARMADA370-FunctionalSpec-datasheet.pdf
- Product Brief: https://web.archive.org/web/20121115063038/http://www.marvell.com/embedded-processors/armada-300/assets/Marvell_ARMADA_370_SoC.pdf
- Hardware Spec: https://web.archive.org/web/20140617183747/http://www.marvell.com/embedded-processors/armada-300/assets/ARMADA370-datasheet.pdf
- Functional Spec: https://web.archive.org/web/20140617183701/http://www.marvell.com/embedded-processors/armada-300/assets/ARMADA370-FunctionalSpec-datasheet.pdf
Core:
Sheeva ARMv7 compatible PJ4B
@ -116,7 +117,7 @@ EBU Armada family
Armada 375 Flavors:
- 88F6720
- Product Brief: http://www.marvell.com/embedded-processors/armada-300/assets/ARMADA_375_SoC-01_product_brief.pdf
- Product Brief: https://web.archive.org/web/20131216023516/http://www.marvell.com/embedded-processors/armada-300/assets/ARMADA_375_SoC-01_product_brief.pdf
Core:
ARM Cortex-A9
@ -126,8 +127,8 @@ EBU Armada family
- 88F6820 Armada 385
- 88F6828 Armada 388
- Product infos: http://www.marvell.com/embedded-processors/armada-38x/
- Functional Spec: http://www.marvell.com/content/dam/marvell/en/public-collateral/embedded-processors/marvell-embedded-processors-armada-38x-functional-specifications-2015-11.pdf
- Product infos: https://web.archive.org/web/20181006144616/http://www.marvell.com/embedded-processors/armada-38x/
- Functional Spec: https://web.archive.org/web/20200420191927/https://www.marvell.com/content/dam/marvell/en/public-collateral/embedded-processors/marvell-embedded-processors-armada-38x-functional-specifications-2015-11.pdf
Core:
ARM Cortex-A9
@ -136,7 +137,7 @@ EBU Armada family
- 88F6920 Armada 390
- 88F6928 Armada 398
- Product infos: http://www.marvell.com/embedded-processors/armada-39x/
- Product infos: https://web.archive.org/web/20181020222559/http://www.marvell.com/embedded-processors/armada-39x/
Core:
ARM Cortex-A9
@ -150,16 +151,16 @@ EBU Armada family
not to be confused with the non-SMP 78xx0 SoCs
Product Brief:
http://www.marvell.com/embedded-processors/armada-xp/assets/Marvell-ArmadaXP-SoC-product%20brief.pdf
https://web.archive.org/web/20121021173528/http://www.marvell.com/embedded-processors/armada-xp/assets/Marvell-ArmadaXP-SoC-product%20brief.pdf
Functional Spec:
http://www.marvell.com/embedded-processors/armada-xp/assets/ARMADA-XP-Functional-SpecDatasheet.pdf
https://web.archive.org/web/20180829171131/http://www.marvell.com/embedded-processors/armada-xp/assets/ARMADA-XP-Functional-SpecDatasheet.pdf
- Hardware Specs:
- http://www.marvell.com/embedded-processors/armada-xp/assets/HW_MV78230_OS.PDF
- http://www.marvell.com/embedded-processors/armada-xp/assets/HW_MV78260_OS.PDF
- http://www.marvell.com/embedded-processors/armada-xp/assets/HW_MV78460_OS.PDF
- https://web.archive.org/web/20141127013651/http://www.marvell.com/embedded-processors/armada-xp/assets/HW_MV78230_OS.PDF
- https://web.archive.org/web/20141222000224/http://www.marvell.com/embedded-processors/armada-xp/assets/HW_MV78260_OS.PDF
- https://web.archive.org/web/20141222000230/http://www.marvell.com/embedded-processors/armada-xp/assets/HW_MV78460_OS.PDF
Core:
Sheeva ARMv7 compatible Dual-core or Quad-core PJ4B-MP
@ -180,13 +181,13 @@ EBU Armada family ARMv8
ARM Cortex A53 (ARMv8)
Homepage:
http://www.marvell.com/embedded-processors/armada-3700/
https://web.archive.org/web/20181103003602/http://www.marvell.com/embedded-processors/armada-3700/
Product Brief:
http://www.marvell.com/content/dam/marvell/en/public-collateral/embedded-processors/marvell-embedded-processors-armada-37xx-product-brief-2016-01.pdf
https://web.archive.org/web/20210121194810/https://www.marvell.com/content/dam/marvell/en/public-collateral/embedded-processors/marvell-embedded-processors-armada-37xx-product-brief-2016-01.pdf
Hardware Spec:
http://www.marvell.com/content/dam/marvell/en/public-collateral/embedded-processors/marvell-embedded-processors-armada-37xx-hardware-specifications-2019-09.pdf
https://web.archive.org/web/20210202162011/http://www.marvell.com/content/dam/marvell/en/public-collateral/embedded-processors/marvell-embedded-processors-armada-37xx-hardware-specifications-2019-09.pdf
Device tree files:
arch/arm64/boot/dts/marvell/armada-37*
@ -198,11 +199,11 @@ EBU Armada family ARMv8
Core: ARM Cortex A72
Homepage:
http://www.marvell.com/embedded-processors/armada-70xx/
https://web.archive.org/web/20181020222606/http://www.marvell.com/embedded-processors/armada-70xx/
Product Brief:
- http://www.marvell.com/embedded-processors/assets/Armada7020PB-Jan2016.pdf
- http://www.marvell.com/embedded-processors/assets/Armada7040PB-Jan2016.pdf
- https://web.archive.org/web/20161010105541/http://www.marvell.com/embedded-processors/assets/Armada7020PB-Jan2016.pdf
- https://web.archive.org/web/20160928154533/http://www.marvell.com/embedded-processors/assets/Armada7040PB-Jan2016.pdf
Device tree files:
arch/arm64/boot/dts/marvell/armada-70*
@ -214,11 +215,11 @@ EBU Armada family ARMv8
ARM Cortex A72
Homepage:
http://www.marvell.com/embedded-processors/armada-80xx/
https://web.archive.org/web/20181022004830/http://www.marvell.com/embedded-processors/armada-80xx/
Product Brief:
- http://www.marvell.com/embedded-processors/assets/Armada8020PB-Jan2016.pdf
- http://www.marvell.com/embedded-processors/assets/Armada8040PB-Jan2016.pdf
- https://web.archive.org/web/20210124233728/https://www.marvell.com/content/dam/marvell/en/public-collateral/embedded-processors/marvell-embedded-processors-armada-8020-product-brief-2017-12.pdf
- https://web.archive.org/web/20161010105532/http://www.marvell.com/embedded-processors/assets/Armada8040PB-Jan2016.pdf
Device tree files:
arch/arm64/boot/dts/marvell/armada-80*
@ -233,10 +234,10 @@ Avanta family
- 88F6560
Homepage:
http://www.marvell.com/broadband/
https://web.archive.org/web/20181005145041/http://www.marvell.com/broadband/
Product Brief:
http://www.marvell.com/broadband/assets/Marvell_Avanta_88F6510_305_060-001_product_brief.pdf
https://web.archive.org/web/20180829171057/http://www.marvell.com/broadband/assets/Marvell_Avanta_88F6510_305_060-001_product_brief.pdf
No public datasheet available.
@ -255,7 +256,7 @@ Storage family
- 88RC1580
Product infos:
http://www.marvell.com/storage/armada-sp/
https://web.archive.org/web/20191129073953/http://www.marvell.com/storage/armada-sp/
Core:
Sheeva ARMv7 comatible Quad-core PJ4C
@ -269,16 +270,16 @@ Dove family (application processor)
- 88AP510 a.k.a Armada 510
Product Brief:
http://www.marvell.com/application-processors/armada-500/assets/Marvell_Armada510_SoC.pdf
https://web.archive.org/web/20111102020643/http://www.marvell.com/application-processors/armada-500/assets/Marvell_Armada510_SoC.pdf
Hardware Spec:
http://www.marvell.com/application-processors/armada-500/assets/Armada-510-Hardware-Spec.pdf
https://web.archive.org/web/20160428160231/http://www.marvell.com/application-processors/armada-500/assets/Armada-510-Hardware-Spec.pdf
Functional Spec:
http://www.marvell.com/application-processors/armada-500/assets/Armada-510-Functional-Spec.pdf
https://web.archive.org/web/20120130172443/http://www.marvell.com/application-processors/armada-500/assets/Armada-510-Functional-Spec.pdf
Homepage:
http://www.marvell.com/application-processors/armada-500/
https://web.archive.org/web/20160822232651/http://www.marvell.com/application-processors/armada-500/
Core:
ARMv7 compatible
@ -295,22 +296,22 @@ PXA 2xx/3xx/93x/95x family
- Application processor only
- Core: ARMv5 XScale1 core
- PXA270, PXA271, PXA272
- Product Brief : http://www.marvell.com/application-processors/pxa-family/assets/pxa_27x_pb.pdf
- Design guide : http://www.marvell.com/application-processors/pxa-family/assets/pxa_27x_design_guide.pdf
- Developers manual : http://www.marvell.com/application-processors/pxa-family/assets/pxa_27x_dev_man.pdf
- Specification : http://www.marvell.com/application-processors/pxa-family/assets/pxa_27x_emts.pdf
- Specification update : http://www.marvell.com/application-processors/pxa-family/assets/pxa_27x_spec_update.pdf
- Product Brief : https://web.archive.org/web/20150927135510/http://www.marvell.com/application-processors/pxa-family/assets/pxa_27x_pb.pdf
- Design guide : https://web.archive.org/web/20120111181937/http://www.marvell.com/application-processors/pxa-family/assets/pxa_27x_design_guide.pdf
- Developers manual : https://web.archive.org/web/20150927164805/http://www.marvell.com/application-processors/pxa-family/assets/pxa_27x_dev_man.pdf
- Specification : https://web.archive.org/web/20140211221535/http://www.marvell.com/application-processors/pxa-family/assets/pxa_27x_emts.pdf
- Specification update : https://web.archive.org/web/20120111104906/http://www.marvell.com/application-processors/pxa-family/assets/pxa_27x_spec_update.pdf
- Application processor only
- Core: ARMv5 XScale2 core
- PXA300, PXA310, PXA320
- PXA 300 Product Brief : http://www.marvell.com/application-processors/pxa-family/assets/PXA300_PB_R4.pdf
- PXA 310 Product Brief : http://www.marvell.com/application-processors/pxa-family/assets/PXA310_PB_R4.pdf
- PXA 320 Product Brief : http://www.marvell.com/application-processors/pxa-family/assets/PXA320_PB_R4.pdf
- Design guide : http://www.marvell.com/application-processors/pxa-family/assets/PXA3xx_Design_Guide.pdf
- Developers manual : http://www.marvell.com/application-processors/pxa-family/assets/PXA3xx_Developers_Manual.zip
- Specifications : http://www.marvell.com/application-processors/pxa-family/assets/PXA3xx_EMTS.pdf
- Specification Update : http://www.marvell.com/application-processors/pxa-family/assets/PXA3xx_Spec_Update.zip
- Reference Manual : http://www.marvell.com/application-processors/pxa-family/assets/PXA3xx_TavorP_BootROM_Ref_Manual.pdf
- PXA 300 Product Brief : https://web.archive.org/web/20120111121203/http://www.marvell.com/application-processors/pxa-family/assets/PXA300_PB_R4.pdf
- PXA 310 Product Brief : https://web.archive.org/web/20120111104515/http://www.marvell.com/application-processors/pxa-family/assets/PXA310_PB_R4.pdf
- PXA 320 Product Brief : https://web.archive.org/web/20121021182826/http://www.marvell.com/application-processors/pxa-family/assets/PXA320_PB_R4.pdf
- Design guide : https://web.archive.org/web/20130727144625/http://www.marvell.com/application-processors/pxa-family/assets/PXA3xx_Design_Guide.pdf
- Developers manual : https://web.archive.org/web/20130727144605/http://www.marvell.com/application-processors/pxa-family/assets/PXA3xx_Developers_Manual.zip
- Specifications : https://web.archive.org/web/20130727144559/http://www.marvell.com/application-processors/pxa-family/assets/PXA3xx_EMTS.pdf
- Specification Update : https://web.archive.org/web/20150927183411/http://www.marvell.com/application-processors/pxa-family/assets/PXA3xx_Spec_Update.zip
- Reference Manual : https://web.archive.org/web/20120111103844/http://www.marvell.com/application-processors/pxa-family/assets/PXA3xx_TavorP_BootROM_Ref_Manual.pdf
- Application processor only
- Core: ARMv5 XScale3 core
- PXA930, PXA935
@ -341,26 +342,26 @@ MMP/MMP2/MMP3 family (communication processor)
Flavors:
- PXA168, a.k.a Armada 168
- Homepage : http://www.marvell.com/application-processors/armada-100/armada-168.jsp
- Product brief : http://www.marvell.com/application-processors/armada-100/assets/pxa_168_pb.pdf
- Hardware manual : http://www.marvell.com/application-processors/armada-100/assets/armada_16x_datasheet.pdf
- Software manual : http://www.marvell.com/application-processors/armada-100/assets/armada_16x_software_manual.pdf
- Specification update : http://www.marvell.com/application-processors/armada-100/assets/ARMADA16x_Spec_update.pdf
- Boot ROM manual : http://www.marvell.com/application-processors/armada-100/assets/armada_16x_ref_manual.pdf
- App node package : http://www.marvell.com/application-processors/armada-100/assets/armada_16x_app_note_package.pdf
- Homepage : https://web.archive.org/web/20110926014256/http://www.marvell.com/application-processors/armada-100/armada-168.jsp
- Product brief : https://web.archive.org/web/20111102030100/http://www.marvell.com/application-processors/armada-100/assets/pxa_168_pb.pdf
- Hardware manual : https://web.archive.org/web/20160428165359/http://www.marvell.com/application-processors/armada-100/assets/armada_16x_datasheet.pdf
- Software manual : https://web.archive.org/web/20160428154454/http://www.marvell.com/application-processors/armada-100/assets/armada_16x_software_manual.pdf
- Specification update : https://web.archive.org/web/20150927160338/http://www.marvell.com/application-processors/armada-100/assets/ARMADA16x_Spec_update.pdf
- Boot ROM manual : https://web.archive.org/web/20130727205559/http://www.marvell.com/application-processors/armada-100/assets/armada_16x_ref_manual.pdf
- App node package : https://web.archive.org/web/20141005090706/http://www.marvell.com/application-processors/armada-100/assets/armada_16x_app_note_package.pdf
- Application processor only
- Core: ARMv5 compatible Marvell PJ1 88sv331 (Mohawk)
- PXA910/PXA920
- Homepage : http://www.marvell.com/communication-processors/pxa910/
- Product Brief : http://www.marvell.com/communication-processors/pxa910/assets/Marvell_PXA910_Platform-001_PB_final.pdf
- Homepage : https://web.archive.org/web/20150928121236/http://www.marvell.com/communication-processors/pxa910/
- Product Brief : https://archive.org/download/marvell-pxa910-pb/Marvell_PXA910_Platform-001_PB.pdf
- Application processor with Communication processor
- Core: ARMv5 compatible Marvell PJ1 88sv331 (Mohawk)
- PXA688, a.k.a. MMP2, a.k.a Armada 610
- Product Brief : http://www.marvell.com/application-processors/armada-600/assets/armada610_pb.pdf
- PXA688, a.k.a. MMP2, a.k.a Armada 610 (OLPC XO-1.75)
- Product Brief : https://web.archive.org/web/20111102023255/http://www.marvell.com/application-processors/armada-600/assets/armada610_pb.pdf
- Application processor only
- Core: ARMv7 compatible Sheeva PJ4 88sv581x core
- PXA2128, a.k.a. MMP3 (OLPC XO4, Linux support not upstream)
- Product Brief : http://www.marvell.com/application-processors/armada/pxa2128/assets/Marvell-ARMADA-PXA2128-SoC-PB.pdf
- PXA2128, a.k.a. MMP3, a.k.a Armada 620 (OLPC XO-4)
- Product Brief : https://web.archive.org/web/20120824055155/http://www.marvell.com/application-processors/armada/pxa2128/assets/Marvell-ARMADA-PXA2128-SoC-PB.pdf
- Application processor only
- Core: Dual-core ARMv7 compatible Sheeva PJ4C core
- PXA960/PXA968/PXA978 (Linux support not upstream)

View File

@ -0,0 +1,34 @@
==================
STM32H750 Overview
==================
Introduction
------------
The STM32H750 is a Cortex-M7 MCU aimed at various applications.
It features:
- Cortex-M7 core running up to @480MHz
- 128K internal flash, 1MBytes internal RAM
- FMC controller to connect SDRAM, NOR and NAND memories
- Dual mode QSPI
- SD/MMC/SDIO support
- Ethernet controller
- USB OTFG FS & HS controllers
- I2C, SPI, CAN busses support
- Several 16 & 32 bits general purpose timers
- Serial Audio interface
- LCD controller
- HDMI-CEC
- SPDIFRX
- DFSDM
Resources
---------
Datasheet and reference manual are publicly available on ST website (STM32H750_).
.. _STM32H750: https://www.st.com/en/microcontrollers-microprocessors/stm32h750-value-line.html
:Authors: Dillon Min <dillon.minfei@gmail.com>

View File

@ -64,4 +64,11 @@ linux,uefi-mmap-desc-size 32-bit Size in bytes of each entry in the UEFI
memory map.
linux,uefi-mmap-desc-ver 32-bit Version of the mmap descriptor format.
linux,initrd-start 64-bit Physical start address of an initrd
linux,initrd-end 64-bit Physical end address of an initrd
kaslr-seed 64-bit Entropy used to randomize the kernel image
base address location.
========================== ====== ===========================================

View File

@ -202,9 +202,10 @@ Before jumping into the kernel, the following conditions must be met:
- System registers
All writable architected system registers at the exception level where
the kernel image will be entered must be initialised by software at a
higher exception level to prevent execution in an UNKNOWN state.
All writable architected system registers at or below the exception
level where the kernel image will be entered must be initialised by
software at a higher exception level to prevent execution in an UNKNOWN
state.
- SCR_EL3.FIQ must have the same value across all CPUs the kernel is
executing on.
@ -270,9 +271,46 @@ Before jumping into the kernel, the following conditions must be met:
having 0b1 set for the corresponding bit for each of the auxiliary
counters present.
For CPUs with the Fine Grained Traps (FEAT_FGT) extension present:
- If EL3 is present and the kernel is entered at EL2:
- SCR_EL3.FGTEn (bit 27) must be initialised to 0b1.
For CPUs with Advanced SIMD and floating point support:
- If EL3 is present:
- CPTR_EL3.TFP (bit 10) must be initialised to 0b0.
- If EL2 is present and the kernel is entered at EL1:
- CPTR_EL2.TFP (bit 10) must be initialised to 0b0.
For CPUs with the Scalable Vector Extension (FEAT_SVE) present:
- if EL3 is present:
- CPTR_EL3.EZ (bit 8) must be initialised to 0b1.
- ZCR_EL3.LEN must be initialised to the same value for all CPUs the
kernel is executed on.
- If the kernel is entered at EL1 and EL2 is present:
- CPTR_EL2.TZ (bit 8) must be initialised to 0b0.
- CPTR_EL2.ZEN (bits 17:16) must be initialised to 0b11.
- ZCR_EL2.LEN must be initialised to the same value for all CPUs the
kernel will execute on.
The requirements described above for CPU mode, caches, MMUs, architected
timers, coherency and system registers apply to all CPUs. All CPUs must
enter the kernel in the same exception level.
enter the kernel in the same exception level. Where the values documented
disable traps it is permissible for these traps to be enabled so long as
those traps are handled transparently by higher exception levels as though
the values documented were set.
The boot loader is expected to enter the kernel on each CPU in the
following manner:

View File

@ -74,7 +74,7 @@ HWCAP_ASIMD
HWCAP_EVTSTRM
The generic timer is configured to generate events at a frequency of
approximately 100KHz.
approximately 10KHz.
HWCAP_AES
Functionality implied by ID_AA64ISAR0_EL1.AES == 0b0001.

View File

@ -107,3 +107,37 @@ filter out the Pointer Authentication system key registers from
KVM_GET/SET_REG_* ioctls and mask those features from cpufeature ID
register. Any attempt to use the Pointer Authentication instructions will
result in an UNDEFINED exception being injected into the guest.
Enabling and disabling keys
---------------------------
The prctl PR_PAC_SET_ENABLED_KEYS allows the user program to control which
PAC keys are enabled in a particular task. It takes two arguments, the
first being a bitmask of PR_PAC_APIAKEY, PR_PAC_APIBKEY, PR_PAC_APDAKEY
and PR_PAC_APDBKEY specifying which keys shall be affected by this prctl,
and the second being a bitmask of the same bits specifying whether the key
should be enabled or disabled. For example::
prctl(PR_PAC_SET_ENABLED_KEYS,
PR_PAC_APIAKEY | PR_PAC_APIBKEY | PR_PAC_APDAKEY | PR_PAC_APDBKEY,
PR_PAC_APIBKEY, 0, 0);
disables all keys except the IB key.
The main reason why this is useful is to enable a userspace ABI that uses PAC
instructions to sign and authenticate function pointers and other pointers
exposed outside of the function, while still allowing binaries conforming to
the ABI to interoperate with legacy binaries that do not sign or authenticate
pointers.
The idea is that a dynamic loader or early startup code would issue this
prctl very early after establishing that a process may load legacy binaries,
but before executing any PAC instructions.
For compatibility with previous kernel versions, processes start up with IA,
IB, DA and DB enabled, and are reset to this state on exec(). Processes created
via fork() and clone() inherit the key enabled state from the calling process.
It is recommended to avoid disabling the IA key, as this has higher performance
overhead than disabling any of the other keys.

View File

@ -40,7 +40,7 @@ space obtained in one of the following ways:
during creation and with the same restrictions as for ``mmap()`` above
(e.g. data, bss, stack).
The AArch64 Tagged Address ABI has two stages of relaxation depending
The AArch64 Tagged Address ABI has two stages of relaxation depending on
how the user addresses are used by the kernel:
1. User addresses not accessed by the kernel but used for address space
@ -113,6 +113,12 @@ ABI relaxation:
- ``shmat()`` and ``shmdt()``.
- ``brk()`` (since kernel v5.6).
- ``mmap()`` (since kernel v5.6).
- ``mremap()``, the ``new_address`` argument (since kernel v5.6).
Any attempt to use non-zero tagged pointers may result in an error code
being returned, a (fatal) signal being raised, or other modes of
failure.

View File

@ -1,4 +1,4 @@
==============
==============
Data Integrity
==============

View File

@ -258,3 +258,18 @@ Q: Can BPF functionality such as new program or map types, new
helpers, etc be added out of kernel module code?
A: NO.
Q: Directly calling kernel function is an ABI?
----------------------------------------------
Q: Some kernel functions (e.g. tcp_slow_start) can be called
by BPF programs. Do these kernel functions become an ABI?
A: NO.
The kernel function protos will change and the bpf programs will be
rejected by the verifier. Also, for example, some of the bpf-callable
kernel functions have already been used by other kernel tcp
cc (congestion-control) implementations. If any of these kernel
functions has changed, both the in-tree and out-of-tree kernel tcp cc
implementations have to be changed. The same goes for the bpf
programs and they have to be adjusted accordingly.

View File

@ -29,7 +29,7 @@ list:
This may also include issues related to XDP, BPF tracing, etc.
Given netdev has a high volume of traffic, please also add the BPF
maintainers to Cc (from kernel MAINTAINERS_ file):
maintainers to Cc (from kernel ``MAINTAINERS`` file):
* Alexei Starovoitov <ast@kernel.org>
* Daniel Borkmann <daniel@iogearbox.net>
@ -234,11 +234,11 @@ be subject to change.
Q: samples/bpf preference vs selftests?
---------------------------------------
Q: When should I add code to `samples/bpf/`_ and when to BPF kernel
selftests_ ?
Q: When should I add code to ``samples/bpf/`` and when to BPF kernel
selftests_?
A: In general, we prefer additions to BPF kernel selftests_ rather than
`samples/bpf/`_. The rationale is very simple: kernel selftests are
``samples/bpf/``. The rationale is very simple: kernel selftests are
regularly run by various bots to test for kernel regressions.
The more test cases we add to BPF selftests, the better the coverage
@ -246,9 +246,9 @@ and the less likely it is that those could accidentally break. It is
not that BPF kernel selftests cannot demo how a specific feature can
be used.
That said, `samples/bpf/`_ may be a good place for people to get started,
That said, ``samples/bpf/`` may be a good place for people to get started,
so it might be advisable that simple demos of features could go into
`samples/bpf/`_, but advanced functional and corner-case testing rather
``samples/bpf/``, but advanced functional and corner-case testing rather
into kernel selftests.
If your sample looks like a test case, then go for BPF kernel selftests
@ -449,6 +449,19 @@ from source at
https://github.com/acmel/dwarves
pahole starts to use libbpf definitions and APIs since v1.13 after the
commit 21507cd3e97b ("pahole: add libbpf as submodule under lib/bpf").
It works well with the git repository because the libbpf submodule will
use "git submodule update --init --recursive" to update.
Unfortunately, the default github release source code does not contain
libbpf submodule source code and this will cause build issues, the tarball
from https://git.kernel.org/pub/scm/devel/pahole/pahole.git/ is same with
github, you can get the source tarball with corresponding libbpf submodule
codes from
https://fedorapeople.org/~acme/dwarves
Some distros have pahole version 1.16 packaged already, e.g.
Fedora, Gentoo.
@ -645,10 +658,9 @@ when:
.. Links
.. _Documentation/process/: https://www.kernel.org/doc/html/latest/process/
.. _MAINTAINERS: ../../MAINTAINERS
.. _netdev-FAQ: ../networking/netdev-FAQ.rst
.. _samples/bpf/: ../../samples/bpf/
.. _selftests: ../../tools/testing/selftests/bpf/
.. _selftests:
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/testing/selftests/bpf/
.. _Documentation/dev-tools/kselftest.rst:
https://www.kernel.org/doc/html/latest/dev-tools/kselftest.html
.. _Documentation/bpf/btf.rst: btf.rst

View File

@ -84,6 +84,7 @@ sequentially and type id is assigned to each recognized type starting from id
#define BTF_KIND_FUNC_PROTO 13 /* Function Proto */
#define BTF_KIND_VAR 14 /* Variable */
#define BTF_KIND_DATASEC 15 /* Section */
#define BTF_KIND_FLOAT 16 /* Floating point */
Note that the type section encodes debug info, not just pure types.
``BTF_KIND_FUNC`` is not a type, and it represents a defined subprogram.
@ -95,8 +96,8 @@ Each type contains the following common data::
/* "info" bits arrangement
* bits 0-15: vlen (e.g. # of struct's members)
* bits 16-23: unused
* bits 24-27: kind (e.g. int, ptr, array...etc)
* bits 28-30: unused
* bits 24-28: kind (e.g. int, ptr, array...etc)
* bits 29-30: unused
* bit 31: kind_flag, currently used by
* struct, union and fwd
*/
@ -452,6 +453,18 @@ map definition.
* ``offset``: the in-section offset of the variable
* ``size``: the size of the variable in bytes
2.2.16 BTF_KIND_FLOAT
~~~~~~~~~~~~~~~~~~~~~
``struct btf_type`` encoding requirement:
* ``name_off``: any valid offset
* ``info.kind_flag``: 0
* ``info.kind``: BTF_KIND_FLOAT
* ``info.vlen``: 0
* ``size``: the size of the float type in bytes: 2, 4, 8, 12 or 16.
No additional type data follow ``btf_type``.
3. BTF Kernel API
*****************

View File

@ -12,9 +12,6 @@ BPF instruction-set.
The Cilium project also maintains a `BPF and XDP Reference Guide`_
that goes into great technical depth about the BPF Architecture.
The primary info for the bpf syscall is available in the `man-pages`_
for `bpf(2)`_.
BPF Type Format (BTF)
=====================
@ -35,6 +32,12 @@ Two sets of Questions and Answers (Q&A) are maintained.
bpf_design_QA
bpf_devel_QA
Syscall API
===========
The primary info for the bpf syscall is available in the `man-pages`_
for `bpf(2)`_. For more information about the userspace API, see
Documentation/userspace-api/ebpf/index.rst.
Helper functions
================

View File

@ -146,18 +146,18 @@ with the kernel as a block device by registering the following general
*struct file_operations*::
struct file_operations cdrom_fops = {
NULL, / lseek /
block _read , / read—general block-dev read /
block _write, / write—general block-dev write /
NULL, / readdir /
NULL, / select /
cdrom_ioctl, / ioctl /
NULL, / mmap /
cdrom_open, / open /
cdrom_release, / release /
NULL, / fsync /
NULL, / fasync /
NULL / revalidate /
NULL, /* lseek */
block _read , /* read--general block-dev read */
block _write, /* write--general block-dev write */
NULL, /* readdir */
NULL, /* select */
cdrom_ioctl, /* ioctl */
NULL, /* mmap */
cdrom_open, /* open */
cdrom_release, /* release */
NULL, /* fsync */
NULL, /* fasync */
NULL /* revalidate */
};
Every active CD-ROM device shares this *struct*. The routines
@ -250,12 +250,12 @@ The drive-specific, minor-like information that is registered with
`cdrom.c`, currently contains the following fields::
struct cdrom_device_info {
const struct cdrom_device_ops * ops; /* device operations for this major */
const struct cdrom_device_ops * ops; /* device operations for this major */
struct list_head list; /* linked list of all device_info */
struct gendisk * disk; /* matching block layer disk */
void * handle; /* driver-dependent data */
int mask; /* mask of capability: disables them */
int mask; /* mask of capability: disables them */
int speed; /* maximum speed for reading data */
int capacity; /* number of discs in a jukebox */
@ -569,7 +569,7 @@ the *CDC_CLOSE_TRAY* bit in *mask*.
In the file `cdrom.c` you will encounter many constructions of the type::
if (cdo->capability & cdi->mask & CDC _⟨capability⟩) ...
if (cdo->capability & ~cdi->mask & CDC _<capability>) ...
There is no *ioctl* to set the mask... The reason is that
I think it is better to control the **behavior** rather than the

View File

@ -331,27 +331,34 @@ htmlhelp_basename = 'TheLinuxKerneldoc'
# -- Options for LaTeX output ---------------------------------------------
latex_elements = {
# The paper size ('letterpaper' or 'a4paper').
'papersize': 'a4paper',
# The paper size ('letterpaper' or 'a4paper').
'papersize': 'a4paper',
# The font size ('10pt', '11pt' or '12pt').
'pointsize': '11pt',
# The font size ('10pt', '11pt' or '12pt').
'pointsize': '11pt',
# Latex figure (float) alignment
#'figure_align': 'htbp',
# Latex figure (float) alignment
#'figure_align': 'htbp',
# Don't mangle with UTF-8 chars
'inputenc': '',
'utf8extra': '',
# Don't mangle with UTF-8 chars
'inputenc': '',
'utf8extra': '',
# Additional stuff for the LaTeX preamble.
# Set document margins
'sphinxsetup': '''
hmargin=0.5in, vmargin=1in,
parsedliteralwraps=true,
verbatimhintsturnover=false,
''',
# Additional stuff for the LaTeX preamble.
'preamble': '''
% Use some font with UTF-8 support with XeLaTeX
% Use some font with UTF-8 support with XeLaTeX
\\usepackage{fontspec}
\\setsansfont{DejaVu Sans}
\\setromanfont{DejaVu Serif}
\\setmonofont{DejaVu Sans Mono}
'''
''',
}
# At least one book (translations) may have Asian characters

View File

@ -213,9 +213,9 @@ Here are the routines, one by one:
there will be no entries in the cache for the kernel address
space for virtual addresses in the range 'start' to 'end-1'.
The first of these two routines is invoked after map_kernel_range()
The first of these two routines is invoked after vmap_range()
has installed the page table entries. The second is invoked
before unmap_kernel_range() deletes the page table entries.
before vunmap_range() deletes the page table entries.
There exists another whole class of cpu cache issues which currently
require a whole different set of interfaces to handle properly.

View File

@ -563,6 +563,16 @@ Free a region of memory previously allocated using dma_alloc_pages().
dev, size, dma_handle and dir must all be the same as those passed into
dma_alloc_pages(). page must be the pointer returned by dma_alloc_pages().
::
int
dma_mmap_pages(struct device *dev, struct vm_area_struct *vma,
size_t size, struct page *page)
Map an allocation returned from dma_alloc_pages() into a user address space.
dev and size must be the same as those passed into dma_alloc_pages().
page must be the pointer returned by dma_alloc_pages().
::
void *
@ -584,6 +594,84 @@ dev, size, dma_handle and dir must all be the same as those passed into
dma_alloc_noncoherent(). cpu_addr must be the virtual address returned by
dma_alloc_noncoherent().
::
struct sg_table *
dma_alloc_noncontiguous(struct device *dev, size_t size,
enum dma_data_direction dir, gfp_t gfp,
unsigned long attrs);
This routine allocates <size> bytes of non-coherent and possibly non-contiguous
memory. It returns a pointer to struct sg_table that describes the allocated
and DMA mapped memory, or NULL if the allocation failed. The resulting memory
can be used for struct page mapped into a scatterlist are suitable for.
The return sg_table is guaranteed to have 1 single DMA mapped segment as
indicated by sgt->nents, but it might have multiple CPU side segments as
indicated by sgt->orig_nents.
The dir parameter specified if data is read and/or written by the device,
see dma_map_single() for details.
The gfp parameter allows the caller to specify the ``GFP_`` flags (see
kmalloc()) for the allocation, but rejects flags used to specify a memory
zone such as GFP_DMA or GFP_HIGHMEM.
The attrs argument must be either 0 or DMA_ATTR_ALLOC_SINGLE_PAGES.
Before giving the memory to the device, dma_sync_sgtable_for_device() needs
to be called, and before reading memory written by the device,
dma_sync_sgtable_for_cpu(), just like for streaming DMA mappings that are
reused.
::
void
dma_free_noncontiguous(struct device *dev, size_t size,
struct sg_table *sgt,
enum dma_data_direction dir)
Free memory previously allocated using dma_alloc_noncontiguous(). dev, size,
and dir must all be the same as those passed into dma_alloc_noncontiguous().
sgt must be the pointer returned by dma_alloc_noncontiguous().
::
void *
dma_vmap_noncontiguous(struct device *dev, size_t size,
struct sg_table *sgt)
Return a contiguous kernel mapping for an allocation returned from
dma_alloc_noncontiguous(). dev and size must be the same as those passed into
dma_alloc_noncontiguous(). sgt must be the pointer returned by
dma_alloc_noncontiguous().
Once a non-contiguous allocation is mapped using this function, the
flush_kernel_vmap_range() and invalidate_kernel_vmap_range() APIs must be used
to manage the coherency between the kernel mapping, the device and user space
mappings (if any).
::
void
dma_vunmap_noncontiguous(struct device *dev, void *vaddr)
Unmap a kernel mapping returned by dma_vmap_noncontiguous(). dev must be the
same the one passed into dma_alloc_noncontiguous(). vaddr must be the pointer
returned by dma_vmap_noncontiguous().
::
int
dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma,
size_t size, struct sg_table *sgt)
Map an allocation returned from dma_alloc_noncontiguous() into a user address
space. dev and size must be the same as those passed into
dma_alloc_noncontiguous(). sgt must be the pointer returned by
dma_alloc_noncontiguous().
::
int

View File

@ -42,10 +42,10 @@ irq_domain usage
================
An interrupt controller driver creates and registers an irq_domain by
calling one of the irq_domain_add_*() functions (each mapping method
has a different allocator function, more on that later). The function
will return a pointer to the irq_domain on success. The caller must
provide the allocator function with an irq_domain_ops structure.
calling one of the irq_domain_add_*() or irq_domain_create_*() functions
(each mapping method has a different allocator function, more on that later).
The function will return a pointer to the irq_domain on success. The caller
must provide the allocator function with an irq_domain_ops structure.
In most cases, the irq_domain will begin empty without any mappings
between hwirq and IRQ numbers. Mappings are added to the irq_domain
@ -147,6 +147,7 @@ Legacy
irq_domain_add_simple()
irq_domain_add_legacy()
irq_domain_add_legacy_isa()
irq_domain_create_simple()
irq_domain_create_legacy()
The Legacy mapping is a special case for drivers that already have a
@ -169,13 +170,13 @@ supported. For example, ISA controllers would use the legacy map for
mapping Linux IRQs 0-15 so that existing ISA drivers get the correct IRQ
numbers.
Most users of legacy mappings should use irq_domain_add_simple() which
will use a legacy domain only if an IRQ range is supplied by the
system and will otherwise use a linear domain mapping. The semantics
of this call are such that if an IRQ range is specified then
Most users of legacy mappings should use irq_domain_add_simple() or
irq_domain_create_simple() which will use a legacy domain only if an IRQ range
is supplied by the system and will otherwise use a linear domain mapping.
The semantics of this call are such that if an IRQ range is specified then
descriptors will be allocated on-the-fly for it, and if no range is
specified it will fall through to irq_domain_add_linear() which means
*no* irq descriptors will be allocated.
specified it will fall through to irq_domain_add_linear() or
irq_domain_create_linear() which means *no* irq descriptors will be allocated.
A typical use case for simple domains is where an irqchip provider
is supporting both dynamic and static IRQ assignments.
@ -186,6 +187,7 @@ that the driver using the simple domain call irq_create_mapping()
before any irq_find_mapping() since the latter will actually work
for the static IRQ assignment case.
irq_domain_add_simple() and irq_domain_create_simple() as well as
irq_domain_add_legacy() and irq_domain_create_legacy() are functionally
equivalent, except for the first argument is different - the former
accepts an Open Firmware specific 'struct device_node', while the latter

View File

@ -92,3 +92,9 @@ More Memory Management Functions
:export:
.. kernel-doc:: mm/page_alloc.c
.. kernel-doc:: mm/mempolicy.c
.. kernel-doc:: include/linux/mm_types.h
:internal:
.. kernel-doc:: include/linux/mm.h
:internal:
.. kernel-doc:: include/linux/mmzone.h

View File

@ -79,7 +79,19 @@ Pointers printed without a specifier extension (i.e unadorned %p) are
hashed to prevent leaking information about the kernel memory layout. This
has the added benefit of providing a unique identifier. On 64-bit machines
the first 32 bits are zeroed. The kernel will print ``(ptrval)`` until it
gathers enough entropy. If you *really* want the address see %px below.
gathers enough entropy.
When possible, use specialised modifiers such as %pS or %pB (described below)
to avoid the need of providing an unhashed address that has to be interpreted
post-hoc. If not possible, and the aim of printing the address is to provide
more information for debugging, use %p and boot the kernel with the
``no_hash_pointers`` parameter during debugging, which will print all %p
addresses unmodified. If you *really* always want the unmodified address, see
%px below.
If (and only if) you are printing addresses as a content of a virtual file in
e.g. procfs or sysfs (using e.g. seq_printf(), not printk()) read by a
userspace process, use the %pK modifier described below instead of %p or %px.
Error Pointers
--------------
@ -139,6 +151,11 @@ For printing kernel pointers which should be hidden from unprivileged
users. The behaviour of %pK depends on the kptr_restrict sysctl - see
Documentation/admin-guide/sysctl/kernel.rst for more details.
This modifier is *only* intended when producing content of a file read by
userspace from e.g. procfs or sysfs, not for dmesg. Please refer to the
section about %p above for discussion about how to manage hashing pointers
in printk().
Unmodified Addresses
--------------------
@ -153,6 +170,13 @@ equivalent to %lx (or %lu). %px is preferred because it is more uniquely
grep'able. If in the future we need to modify the way the kernel handles
printing pointers we will be better equipped to find the call sites.
Before using %px, consider if using %p is sufficient together with enabling the
``no_hash_pointers`` kernel parameter during debugging sessions (see the %p
description above). One valid scenario for %px might be printing information
immediately before a panic, which prevents any sensitive information to be
exploited anyway, and with %px there would be no need to reproduce the panic
with no_hash_pointers.
Pointer Differences
-------------------
@ -540,7 +564,7 @@ Flags bitfields such as page flags, gfp_flags
::
%pGp referenced|uptodate|lru|active|private
%pGp referenced|uptodate|lru|active|private|node=0|zone=2|lastcpupid=0x1fffff
%pGg GFP_USER|GFP_DMA32|GFP_NOWARN
%pGv read|exec|mayread|maywrite|mayexec|denywrite
@ -567,6 +591,24 @@ For printing netdev_features_t.
Passed by reference.
V4L2 and DRM FourCC code (pixel format)
---------------------------------------
::
%p4cc
Print a FourCC code used by V4L2 or DRM, including format endianness and
its numerical value as hexadecimal.
Passed by reference.
Examples::
%p4cc BG12 little-endian (0x32314742)
%p4cc Y10 little-endian (0x20303159)
%p4cc NV12 big-endian (0xb231564e)
Thanks
======

View File

@ -43,14 +43,14 @@ exporting of kernel symbols to the kernel symbol table, variants of these are
available to export symbols into a certain namespace: EXPORT_SYMBOL_NS() and
EXPORT_SYMBOL_NS_GPL(). They take one additional argument: the namespace.
Please note that due to macro expansion that argument needs to be a
preprocessor symbol. E.g. to export the symbol `usb_stor_suspend` into the
namespace `USB_STORAGE`, use::
preprocessor symbol. E.g. to export the symbol ``usb_stor_suspend`` into the
namespace ``USB_STORAGE``, use::
EXPORT_SYMBOL_NS(usb_stor_suspend, USB_STORAGE);
The corresponding ksymtab entry struct `kernel_symbol` will have the member
`namespace` set accordingly. A symbol that is exported without a namespace will
refer to `NULL`. There is no default namespace if none is defined. `modpost`
The corresponding ksymtab entry struct ``kernel_symbol`` will have the member
``namespace`` set accordingly. A symbol that is exported without a namespace will
refer to ``NULL``. There is no default namespace if none is defined. ``modpost``
and kernel/module.c make use the namespace at build time or module load time,
respectively.
@ -64,7 +64,7 @@ and EXPORT_SYMBOL_GPL() macro expansions that do not specify a namespace.
There are multiple ways of specifying this define and it depends on the
subsystem and the maintainer's preference, which one to use. The first option
is to define the default namespace in the `Makefile` of the subsystem. E.g. to
is to define the default namespace in the ``Makefile`` of the subsystem. E.g. to
export all symbols defined in usb-common into the namespace USB_COMMON, add a
line like this to drivers/usb/common/Makefile::
@ -96,7 +96,7 @@ using a statement like::
MODULE_IMPORT_NS(USB_STORAGE);
This will create a `modinfo` tag in the module for each imported namespace.
This will create a ``modinfo`` tag in the module for each imported namespace.
This has the side effect, that the imported namespaces of a module can be
inspected with modinfo::
@ -113,7 +113,7 @@ metadata definitions like MODULE_AUTHOR() or MODULE_LICENSE(). Refer to section
4. Loading Modules that use namespaced Symbols
==============================================
At module loading time (e.g. `insmod`), the kernel will check each symbol
At module loading time (e.g. ``insmod``), the kernel will check each symbol
referenced from the module for its availability and whether the namespace it
might be exported to has been imported by the module. The default behaviour of
the kernel is to reject loading modules that don't specify sufficient imports.
@ -138,19 +138,19 @@ missing imports. Fixing missing imports can be done with::
A typical scenario for module authors would be::
- write code that depends on a symbol from a not imported namespace
- `make`
- ``make``
- notice the warning of modpost telling about a missing import
- run `make nsdeps` to add the import to the correct code location
- run ``make nsdeps`` to add the import to the correct code location
For subsystem maintainers introducing a namespace, the steps are very similar.
Again, `make nsdeps` will eventually add the missing namespace imports for
Again, ``make nsdeps`` will eventually add the missing namespace imports for
in-tree modules::
- move or add symbols to a namespace (e.g. with EXPORT_SYMBOL_NS())
- `make` (preferably with an allmodconfig to cover all in-kernel
- ``make`` (preferably with an allmodconfig to cover all in-kernel
modules)
- notice the warning of modpost telling about a missing import
- run `make nsdeps` to add the import to the correct code location
- run ``make nsdeps`` to add the import to the correct code location
You can also run nsdeps for external module builds. A typical usage is::

View File

@ -0,0 +1,755 @@
.. SPDX-License-Identifier: GPL-2.0-only
==========
Checkpatch
==========
Checkpatch (scripts/checkpatch.pl) is a perl script which checks for trivial
style violations in patches and optionally corrects them. Checkpatch can
also be run on file contexts and without the kernel tree.
Checkpatch is not always right. Your judgement takes precedence over checkpatch
messages. If your code looks better with the violations, then its probably
best left alone.
Options
=======
This section will describe the options checkpatch can be run with.
Usage::
./scripts/checkpatch.pl [OPTION]... [FILE]...
Available options:
- -q, --quiet
Enable quiet mode.
- -v, --verbose
Enable verbose mode. Additional verbose test descriptions are output
so as to provide information on why that particular message is shown.
- --no-tree
Run checkpatch without the kernel tree.
- --no-signoff
Disable the 'Signed-off-by' line check. The sign-off is a simple line at
the end of the explanation for the patch, which certifies that you wrote it
or otherwise have the right to pass it on as an open-source patch.
Example::
Signed-off-by: Random J Developer <random@developer.example.org>
Setting this flag effectively stops a message for a missing signed-off-by
line in a patch context.
- --patch
Treat FILE as a patch. This is the default option and need not be
explicitly specified.
- --emacs
Set output to emacs compile window format. This allows emacs users to jump
from the error in the compile window directly to the offending line in the
patch.
- --terse
Output only one line per report.
- --showfile
Show the diffed file position instead of the input file position.
- -g, --git
Treat FILE as a single commit or a git revision range.
Single commit with:
- <rev>
- <rev>^
- <rev>~n
Multiple commits with:
- <rev1>..<rev2>
- <rev1>...<rev2>
- <rev>-<count>
- -f, --file
Treat FILE as a regular source file. This option must be used when running
checkpatch on source files in the kernel.
- --subjective, --strict
Enable stricter tests in checkpatch. By default the tests emitted as CHECK
do not activate by default. Use this flag to activate the CHECK tests.
- --list-types
Every message emitted by checkpatch has an associated TYPE. Add this flag
to display all the types in checkpatch.
Note that when this flag is active, checkpatch does not read the input FILE,
and no message is emitted. Only a list of types in checkpatch is output.
- --types TYPE(,TYPE2...)
Only display messages with the given types.
Example::
./scripts/checkpatch.pl mypatch.patch --types EMAIL_SUBJECT,BRACES
- --ignore TYPE(,TYPE2...)
Checkpatch will not emit messages for the specified types.
Example::
./scripts/checkpatch.pl mypatch.patch --ignore EMAIL_SUBJECT,BRACES
- --show-types
By default checkpatch doesn't display the type associated with the messages.
Set this flag to show the message type in the output.
- --max-line-length=n
Set the max line length (default 100). If a line exceeds the specified
length, a LONG_LINE message is emitted.
The message level is different for patch and file contexts. For patches,
a WARNING is emitted. While a milder CHECK is emitted for files. So for
file contexts, the --strict flag must also be enabled.
- --min-conf-desc-length=n
Set the Kconfig entry minimum description length, if shorter, warn.
- --tab-size=n
Set the number of spaces for tab (default 8).
- --root=PATH
PATH to the kernel tree root.
This option must be specified when invoking checkpatch from outside
the kernel root.
- --no-summary
Suppress the per file summary.
- --mailback
Only produce a report in case of Warnings or Errors. Milder Checks are
excluded from this.
- --summary-file
Include the filename in summary.
- --debug KEY=[0|1]
Turn on/off debugging of KEY, where KEY is one of 'values', 'possible',
'type', and 'attr' (default is all off).
- --fix
This is an EXPERIMENTAL feature. If correctable errors exists, a file
<inputfile>.EXPERIMENTAL-checkpatch-fixes is created which has the
automatically fixable errors corrected.
- --fix-inplace
EXPERIMENTAL - Similar to --fix but input file is overwritten with fixes.
DO NOT USE this flag unless you are absolutely sure and you have a backup
in place.
- --ignore-perl-version
Override checking of perl version. Runtime errors maybe encountered after
enabling this flag if the perl version does not meet the minimum specified.
- --codespell
Use the codespell dictionary for checking spelling errors.
- --codespellfile
Use the specified codespell file.
Default is '/usr/share/codespell/dictionary.txt'.
- --typedefsfile
Read additional types from this file.
- --color[=WHEN]
Use colors 'always', 'never', or only when output is a terminal ('auto').
Default is 'auto'.
- --kconfig-prefix=WORD
Use WORD as a prefix for Kconfig symbols (default is `CONFIG_`).
- -h, --help, --version
Display the help text.
Message Levels
==============
Messages in checkpatch are divided into three levels. The levels of messages
in checkpatch denote the severity of the error. They are:
- ERROR
This is the most strict level. Messages of type ERROR must be taken
seriously as they denote things that are very likely to be wrong.
- WARNING
This is the next stricter level. Messages of type WARNING requires a
more careful review. But it is milder than an ERROR.
- CHECK
This is the mildest level. These are things which may require some thought.
Type Descriptions
=================
This section contains a description of all the message types in checkpatch.
.. Types in this section are also parsed by checkpatch.
.. The types are grouped into subsections based on use.
Allocation style
----------------
**ALLOC_ARRAY_ARGS**
The first argument for kcalloc or kmalloc_array should be the
number of elements. sizeof() as the first argument is generally
wrong.
See: https://www.kernel.org/doc/html/latest/core-api/memory-allocation.html
**ALLOC_SIZEOF_STRUCT**
The allocation style is bad. In general for family of
allocation functions using sizeof() to get memory size,
constructs like::
p = alloc(sizeof(struct foo), ...)
should be::
p = alloc(sizeof(*p), ...)
See: https://www.kernel.org/doc/html/latest/process/coding-style.html#allocating-memory
**ALLOC_WITH_MULTIPLY**
Prefer kmalloc_array/kcalloc over kmalloc/kzalloc with a
sizeof multiply.
See: https://www.kernel.org/doc/html/latest/core-api/memory-allocation.html
API usage
---------
**ARCH_DEFINES**
Architecture specific defines should be avoided wherever
possible.
**ARCH_INCLUDE_LINUX**
Whenever asm/file.h is included and linux/file.h exists, a
conversion can be made when linux/file.h includes asm/file.h.
However this is not always the case (See signal.h).
This message type is emitted only for includes from arch/.
**AVOID_BUG**
BUG() or BUG_ON() should be avoided totally.
Use WARN() and WARN_ON() instead, and handle the "impossible"
error condition as gracefully as possible.
See: https://www.kernel.org/doc/html/latest/process/deprecated.html#bug-and-bug-on
**CONSIDER_KSTRTO**
The simple_strtol(), simple_strtoll(), simple_strtoul(), and
simple_strtoull() functions explicitly ignore overflows, which
may lead to unexpected results in callers. The respective kstrtol(),
kstrtoll(), kstrtoul(), and kstrtoull() functions tend to be the
correct replacements.
See: https://www.kernel.org/doc/html/latest/process/deprecated.html#simple-strtol-simple-strtoll-simple-strtoul-simple-strtoull
**LOCKDEP**
The lockdep_no_validate class was added as a temporary measure to
prevent warnings on conversion of device->sem to device->mutex.
It should not be used for any other purpose.
See: https://lore.kernel.org/lkml/1268959062.9440.467.camel@laptop/
**MALFORMED_INCLUDE**
The #include statement has a malformed path. This has happened
because the author has included a double slash "//" in the pathname
accidentally.
**USE_LOCKDEP**
lockdep_assert_held() annotations should be preferred over
assertions based on spin_is_locked()
See: https://www.kernel.org/doc/html/latest/locking/lockdep-design.html#annotations
**UAPI_INCLUDE**
No #include statements in include/uapi should use a uapi/ path.
Comment style
-------------
**BLOCK_COMMENT_STYLE**
The comment style is incorrect. The preferred style for multi-
line comments is::
/*
* This is the preferred style
* for multi line comments.
*/
The networking comment style is a bit different, with the first line
not empty like the former::
/* This is the preferred comment style
* for files in net/ and drivers/net/
*/
See: https://www.kernel.org/doc/html/latest/process/coding-style.html#commenting
**C99_COMMENTS**
C99 style single line comments (//) should not be used.
Prefer the block comment style instead.
See: https://www.kernel.org/doc/html/latest/process/coding-style.html#commenting
Commit message
--------------
**BAD_SIGN_OFF**
The signed-off-by line does not fall in line with the standards
specified by the community.
See: https://www.kernel.org/doc/html/latest/process/submitting-patches.html#developer-s-certificate-of-origin-1-1
**BAD_STABLE_ADDRESS_STYLE**
The email format for stable is incorrect.
Some valid options for stable address are::
1. stable@vger.kernel.org
2. stable@kernel.org
For adding version info, the following comment style should be used::
stable@vger.kernel.org # version info
**COMMIT_COMMENT_SYMBOL**
Commit log lines starting with a '#' are ignored by git as
comments. To solve this problem addition of a single space
infront of the log line is enough.
**COMMIT_MESSAGE**
The patch is missing a commit description. A brief
description of the changes made by the patch should be added.
See: https://www.kernel.org/doc/html/latest/process/submitting-patches.html#describe-your-changes
**MISSING_SIGN_OFF**
The patch is missing a Signed-off-by line. A signed-off-by
line should be added according to Developer's certificate of
Origin.
See: https://www.kernel.org/doc/html/latest/process/submitting-patches.html#sign-your-work-the-developer-s-certificate-of-origin
**NO_AUTHOR_SIGN_OFF**
The author of the patch has not signed off the patch. It is
required that a simple sign off line should be present at the
end of explanation of the patch to denote that the author has
written it or otherwise has the rights to pass it on as an open
source patch.
See: https://www.kernel.org/doc/html/latest/process/submitting-patches.html#sign-your-work-the-developer-s-certificate-of-origin
**DIFF_IN_COMMIT_MSG**
Avoid having diff content in commit message.
This causes problems when one tries to apply a file containing both
the changelog and the diff because patch(1) tries to apply the diff
which it found in the changelog.
See: https://lore.kernel.org/lkml/20150611134006.9df79a893e3636019ad2759e@linux-foundation.org/
**GERRIT_CHANGE_ID**
To be picked up by gerrit, the footer of the commit message might
have a Change-Id like::
Change-Id: Ic8aaa0728a43936cd4c6e1ed590e01ba8f0fbf5b
Signed-off-by: A. U. Thor <author@example.com>
The Change-Id line must be removed before submitting.
**GIT_COMMIT_ID**
The proper way to reference a commit id is:
commit <12+ chars of sha1> ("<title line>")
An example may be::
Commit e21d2170f36602ae2708 ("video: remove unnecessary
platform_set_drvdata()") removed the unnecessary
platform_set_drvdata(), but left the variable "dev" unused,
delete it.
See: https://www.kernel.org/doc/html/latest/process/submitting-patches.html#describe-your-changes
Comparison style
----------------
**ASSIGN_IN_IF**
Do not use assignments in if condition.
Example::
if ((foo = bar(...)) < BAZ) {
should be written as::
foo = bar(...);
if (foo < BAZ) {
**BOOL_COMPARISON**
Comparisons of A to true and false are better written
as A and !A.
See: https://lore.kernel.org/lkml/1365563834.27174.12.camel@joe-AO722/
**COMPARISON_TO_NULL**
Comparisons to NULL in the form (foo == NULL) or (foo != NULL)
are better written as (!foo) and (foo).
**CONSTANT_COMPARISON**
Comparisons with a constant or upper case identifier on the left
side of the test should be avoided.
Macros, Attributes and Symbols
------------------------------
**ARRAY_SIZE**
The ARRAY_SIZE(foo) macro should be preferred over
sizeof(foo)/sizeof(foo[0]) for finding number of elements in an
array.
The macro is defined in include/linux/kernel.h::
#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
**AVOID_EXTERNS**
Function prototypes don't need to be declared extern in .h
files. It's assumed by the compiler and is unnecessary.
**AVOID_L_PREFIX**
Local symbol names that are prefixed with `.L` should be avoided,
as this has special meaning for the assembler; a symbol entry will
not be emitted into the symbol table. This can prevent `objtool`
from generating correct unwind info.
Symbols with STB_LOCAL binding may still be used, and `.L` prefixed
local symbol names are still generally usable within a function,
but `.L` prefixed local symbol names should not be used to denote
the beginning or end of code regions via
`SYM_CODE_START_LOCAL`/`SYM_CODE_END`
**BIT_MACRO**
Defines like: 1 << <digit> could be BIT(digit).
The BIT() macro is defined in include/linux/bitops.h::
#define BIT(nr) (1UL << (nr))
**CONST_READ_MOSTLY**
When a variable is tagged with the __read_mostly annotation, it is a
signal to the compiler that accesses to the variable will be mostly
reads and rarely(but NOT never) a write.
const __read_mostly does not make any sense as const data is already
read-only. The __read_mostly annotation thus should be removed.
**DATE_TIME**
It is generally desirable that building the same source code with
the same set of tools is reproducible, i.e. the output is always
exactly the same.
The kernel does *not* use the ``__DATE__`` and ``__TIME__`` macros,
and enables warnings if they are used as they can lead to
non-deterministic builds.
See: https://www.kernel.org/doc/html/latest/kbuild/reproducible-builds.html#timestamps
**DEFINE_ARCH_HAS**
The ARCH_HAS_xyz and ARCH_HAVE_xyz patterns are wrong.
For big conceptual features use Kconfig symbols instead. And for
smaller things where we have compatibility fallback functions but
want architectures able to override them with optimized ones, we
should either use weak functions (appropriate for some cases), or
the symbol that protects them should be the same symbol we use.
See: https://lore.kernel.org/lkml/CA+55aFycQ9XJvEOsiM3txHL5bjUc8CeKWJNR_H+MiicaddB42Q@mail.gmail.com/
**INIT_ATTRIBUTE**
Const init definitions should use __initconst instead of
__initdata.
Similarly init definitions without const require a separate
use of const.
**INLINE_LOCATION**
The inline keyword should sit between storage class and type.
For example, the following segment::
inline static int example_function(void)
{
...
}
should be::
static inline int example_function(void)
{
...
}
**MULTISTATEMENT_MACRO_USE_DO_WHILE**
Macros with multiple statements should be enclosed in a
do - while block. Same should also be the case for macros
starting with `if` to avoid logic defects::
#define macrofun(a, b, c) \
do { \
if (a == 5) \
do_this(b, c); \
} while (0)
See: https://www.kernel.org/doc/html/latest/process/coding-style.html#macros-enums-and-rtl
**WEAK_DECLARATION**
Using weak declarations like __attribute__((weak)) or __weak
can have unintended link defects. Avoid using them.
Functions and Variables
-----------------------
**CAMELCASE**
Avoid CamelCase Identifiers.
See: https://www.kernel.org/doc/html/latest/process/coding-style.html#naming
**FUNCTION_WITHOUT_ARGS**
Function declarations without arguments like::
int foo()
should be::
int foo(void)
**GLOBAL_INITIALISERS**
Global variables should not be initialized explicitly to
0 (or NULL, false, etc.). Your compiler (or rather your
loader, which is responsible for zeroing out the relevant
sections) automatically does it for you.
**INITIALISED_STATIC**
Static variables should not be initialized explicitly to zero.
Your compiler (or rather your loader) automatically does
it for you.
**RETURN_PARENTHESES**
return is not a function and as such doesn't need parentheses::
return (bar);
can simply be::
return bar;
Spacing and Brackets
--------------------
**ASSIGNMENT_CONTINUATIONS**
Assignment operators should not be written at the start of a
line but should follow the operand at the previous line.
**BRACES**
The placement of braces is stylistically incorrect.
The preferred way is to put the opening brace last on the line,
and put the closing brace first::
if (x is true) {
we do y
}
This applies for all non-functional blocks.
However, there is one special case, namely functions: they have the
opening brace at the beginning of the next line, thus::
int function(int x)
{
body of function
}
See: https://www.kernel.org/doc/html/latest/process/coding-style.html#placing-braces-and-spaces
**BRACKET_SPACE**
Whitespace before opening bracket '[' is prohibited.
There are some exceptions:
1. With a type on the left::
;int [] a;
2. At the beginning of a line for slice initialisers::
[0...10] = 5,
3. Inside a curly brace::
= { [0...10] = 5 }
**CODE_INDENT**
Code indent should use tabs instead of spaces.
Outside of comments, documentation and Kconfig,
spaces are never used for indentation.
See: https://www.kernel.org/doc/html/latest/process/coding-style.html#indentation
**CONCATENATED_STRING**
Concatenated elements should have a space in between.
Example::
printk(KERN_INFO"bar");
should be::
printk(KERN_INFO "bar");
**ELSE_AFTER_BRACE**
`else {` should follow the closing block `}` on the same line.
See: https://www.kernel.org/doc/html/latest/process/coding-style.html#placing-braces-and-spaces
**LINE_SPACING**
Vertical space is wasted given the limited number of lines an
editor window can display when multiple blank lines are used.
See: https://www.kernel.org/doc/html/latest/process/coding-style.html#spaces
**OPEN_BRACE**
The opening brace should be following the function definitions on the
next line. For any non-functional block it should be on the same line
as the last construct.
See: https://www.kernel.org/doc/html/latest/process/coding-style.html#placing-braces-and-spaces
**POINTER_LOCATION**
When using pointer data or a function that returns a pointer type,
the preferred use of * is adjacent to the data name or function name
and not adjacent to the type name.
Examples::
char *linux_banner;
unsigned long long memparse(char *ptr, char **retptr);
char *match_strdup(substring_t *s);
See: https://www.kernel.org/doc/html/latest/process/coding-style.html#spaces
**SPACING**
Whitespace style used in the kernel sources is described in kernel docs.
See: https://www.kernel.org/doc/html/latest/process/coding-style.html#spaces
**SWITCH_CASE_INDENT_LEVEL**
switch should be at the same indent as case.
Example::
switch (suffix) {
case 'G':
case 'g':
mem <<= 30;
break;
case 'M':
case 'm':
mem <<= 20;
break;
case 'K':
case 'k':
mem <<= 10;
/* fall through */
default:
break;
}
See: https://www.kernel.org/doc/html/latest/process/coding-style.html#indentation
**TRAILING_WHITESPACE**
Trailing whitespace should always be removed.
Some editors highlight the trailing whitespace and cause visual
distractions when editing files.
See: https://www.kernel.org/doc/html/latest/process/coding-style.html#spaces
**WHILE_AFTER_BRACE**
while should follow the closing bracket on the same line::
do {
...
} while(something);
See: https://www.kernel.org/doc/html/latest/process/coding-style.html#placing-braces-and-spaces
Others
------
**CONFIG_DESCRIPTION**
Kconfig symbols should have a help text which fully describes
it.
**CORRUPTED_PATCH**
The patch seems to be corrupted or lines are wrapped.
Please regenerate the patch file before sending it to the maintainer.
**DOS_LINE_ENDINGS**
For DOS-formatted patches, there are extra ^M symbols at the end of
the line. These should be removed.
**EXECUTE_PERMISSIONS**
There is no reason for source files to be executable. The executable
bit can be removed safely.
**NON_OCTAL_PERMISSIONS**
Permission bits should use 4 digit octal permissions (like 0700 or 0444).
Avoid using any other base like decimal.
**NOT_UNIFIED_DIFF**
The patch file does not appear to be in unified-diff format. Please
regenerate the patch file before sending it to the maintainer.
**PRINTF_0XDECIMAL**
Prefixing 0x with decimal output is defective and should be corrected.
**TRAILING_STATEMENTS**
Trailing statements (for example after any conditional) should be
on the next line.
Like::
if (x == y) break;
should be::
if (x == y)
break;

View File

@ -124,6 +124,8 @@ box for setups where kernels are built and run on the same machine. In
cases where the kernel runs on a separate machine, special preparations
must be made, depending on where the gcov tool is used:
.. _gcov-test:
a) gcov is run on the TEST machine
The gcov tool version on the test machine must be compatible with the
@ -143,6 +145,8 @@ a) gcov is run on the TEST machine
machine. If any of the path components is symbolic link, the actual
directory needs to be used instead (due to make's CURDIR handling).
.. _gcov-build:
b) gcov is run on the BUILD machine
The following files need to be copied after each test case from test
@ -211,7 +215,7 @@ Appendix A: gather_on_build.sh
------------------------------
Sample script to gather coverage meta files on the build machine
(see 6a):
(see :ref:`Separated build and test machines a. <gcov-test>`):
.. code-block:: sh
@ -244,7 +248,7 @@ Appendix B: gather_on_test.sh
-----------------------------
Sample script to gather coverage data files on the test machine
(see 6b):
(see :ref:`Separated build and test machines b. <gcov-build>`):
.. code-block:: sh

View File

@ -114,7 +114,7 @@ Examples of using the Linux-provided gdb helpers
[ 0.000000] BIOS-e820: [mem 0x000000000009fc00-0x000000000009ffff] reserved
....
- Examine fields of the current task struct::
- Examine fields of the current task struct(supported by x86 and arm64 only)::
(gdb) p $lx_current().pid
$1 = 4998

View File

@ -7,6 +7,9 @@ be used to work on the kernel. For now, the documents have been pulled
together without any significant effort to integrate them into a coherent
whole; patches welcome!
A brief overview of testing-specific tools can be found in
Documentation/dev-tools/testing-overview.rst
.. class:: toc-title
Table of contents
@ -14,6 +17,8 @@ whole; patches welcome!
.. toctree::
:maxdepth: 2
testing-overview
checkpatch
coccinelle
sparse
kcov

View File

@ -11,46 +11,56 @@ designed to find out-of-bound and use-after-free bugs. KASAN has three modes:
2. software tag-based KASAN (similar to userspace HWASan),
3. hardware tag-based KASAN (based on hardware memory tagging).
Software KASAN modes (1 and 2) use compile-time instrumentation to insert
validity checks before every memory access, and therefore require a compiler
Generic KASAN is mainly used for debugging due to a large memory overhead.
Software tag-based KASAN can be used for dogfood testing as it has a lower
memory overhead that allows using it with real workloads. Hardware tag-based
KASAN comes with low memory and performance overheads and, therefore, can be
used in production. Either as an in-field memory bug detector or as a security
mitigation.
Software KASAN modes (#1 and #2) use compile-time instrumentation to insert
validity checks before every memory access and, therefore, require a compiler
version that supports that.
Generic KASAN is supported in both GCC and Clang. With GCC it requires version
Generic KASAN is supported in GCC and Clang. With GCC, it requires version
8.3.0 or later. Any supported Clang version is compatible, but detection of
out-of-bounds accesses for global variables is only supported since Clang 11.
Tag-based KASAN is only supported in Clang.
Software tag-based KASAN mode is only supported in Clang.
Currently generic KASAN is supported for the x86_64, arm, arm64, xtensa, s390
The hardware KASAN mode (#3) relies on hardware to perform the checks but
still requires a compiler version that supports memory tagging instructions.
This mode is supported in GCC 10+ and Clang 11+.
Both software KASAN modes work with SLUB and SLAB memory allocators,
while the hardware tag-based KASAN currently only supports SLUB.
Currently, generic KASAN is supported for the x86_64, arm, arm64, xtensa, s390,
and riscv architectures, and tag-based KASAN modes are supported only for arm64.
Usage
-----
To enable KASAN configure kernel with::
To enable KASAN, configure the kernel with::
CONFIG_KASAN = y
CONFIG_KASAN=y
and choose between CONFIG_KASAN_GENERIC (to enable generic KASAN),
CONFIG_KASAN_SW_TAGS (to enable software tag-based KASAN), and
CONFIG_KASAN_HW_TAGS (to enable hardware tag-based KASAN).
and choose between ``CONFIG_KASAN_GENERIC`` (to enable generic KASAN),
``CONFIG_KASAN_SW_TAGS`` (to enable software tag-based KASAN), and
``CONFIG_KASAN_HW_TAGS`` (to enable hardware tag-based KASAN).
For software modes, you also need to choose between CONFIG_KASAN_OUTLINE and
CONFIG_KASAN_INLINE. Outline and inline are compiler instrumentation types.
The former produces smaller binary while the latter is 1.1 - 2 times faster.
For software modes, also choose between ``CONFIG_KASAN_OUTLINE`` and
``CONFIG_KASAN_INLINE``. Outline and inline are compiler instrumentation types.
The former produces a smaller binary while the latter is 1.1-2 times faster.
Both software KASAN modes work with both SLUB and SLAB memory allocators,
while the hardware tag-based KASAN currently only support SLUB.
For better error reports that include stack traces, enable CONFIG_STACKTRACE.
To augment reports with last allocation and freeing stack of the physical page,
it is recommended to enable also CONFIG_PAGE_OWNER and boot with page_owner=on.
To include alloc and free stack traces of affected slab objects into reports,
enable ``CONFIG_STACKTRACE``. To include alloc and free stack traces of affected
physical pages, enable ``CONFIG_PAGE_OWNER`` and boot with ``page_owner=on``.
Error reports
~~~~~~~~~~~~~
A typical out-of-bounds access generic KASAN report looks like this::
A typical KASAN report looks like this::
==================================================================
BUG: KASAN: slab-out-of-bounds in kmalloc_oob_right+0xa8/0xbc [test_kasan]
@ -123,68 +133,75 @@ A typical out-of-bounds access generic KASAN report looks like this::
ffff8801f44ec400: fb fb fb fb fb fb fb fb fc fc fc fc fc fc fc fc
==================================================================
The header of the report provides a short summary of what kind of bug happened
and what kind of access caused it. It's followed by a stack trace of the bad
access, a stack trace of where the accessed memory was allocated (in case bad
access happens on a slab object), and a stack trace of where the object was
freed (in case of a use-after-free bug report). Next comes a description of
the accessed slab object and information about the accessed memory page.
The report header summarizes what kind of bug happened and what kind of access
caused it. It is followed by a stack trace of the bad access, a stack trace of
where the accessed memory was allocated (in case a slab object was accessed),
and a stack trace of where the object was freed (in case of a use-after-free
bug report). Next comes a description of the accessed slab object and the
information about the accessed memory page.
In the last section the report shows memory state around the accessed address.
Internally KASAN tracks memory state separately for each memory granule, which
In the end, the report shows the memory state around the accessed address.
Internally, KASAN tracks memory state separately for each memory granule, which
is either 8 or 16 aligned bytes depending on KASAN mode. Each number in the
memory state section of the report shows the state of one of the memory
granules that surround the accessed address.
For generic KASAN the size of each memory granule is 8. The state of each
For generic KASAN, the size of each memory granule is 8. The state of each
granule is encoded in one shadow byte. Those 8 bytes can be accessible,
partially accessible, freed or be a part of a redzone. KASAN uses the following
encoding for each shadow byte: 0 means that all 8 bytes of the corresponding
partially accessible, freed, or be a part of a redzone. KASAN uses the following
encoding for each shadow byte: 00 means that all 8 bytes of the corresponding
memory region are accessible; number N (1 <= N <= 7) means that the first N
bytes are accessible, and other (8 - N) bytes are not; any negative value
indicates that the entire 8-byte word is inaccessible. KASAN uses different
negative values to distinguish between different kinds of inaccessible memory
like redzones or freed memory (see mm/kasan/kasan.h).
In the report above the arrows point to the shadow byte 03, which means that
the accessed address is partially accessible. For tag-based KASAN modes this
last report section shows the memory tags around the accessed address
(see the `Implementation details`_ section).
In the report above, the arrow points to the shadow byte ``03``, which means
that the accessed address is partially accessible.
For tag-based KASAN modes, this last report section shows the memory tags around
the accessed address (see the `Implementation details`_ section).
Note that KASAN bug titles (like ``slab-out-of-bounds`` or ``use-after-free``)
are best-effort: KASAN prints the most probable bug type based on the limited
information it has. The actual type of the bug might be different.
Generic KASAN also reports up to two auxiliary call stack traces. These stack
traces point to places in code that interacted with the object but that are not
directly present in the bad access stack trace. Currently, this includes
call_rcu() and workqueue queuing.
Boot parameters
~~~~~~~~~~~~~~~
KASAN is affected by the generic ``panic_on_warn`` command line parameter.
When it is enabled, KASAN panics the kernel after printing a bug report.
By default, KASAN prints a bug report only for the first invalid memory access.
With ``kasan_multi_shot``, KASAN prints a report on every invalid access. This
effectively disables ``panic_on_warn`` for KASAN reports.
Hardware tag-based KASAN mode (see the section about various modes below) is
intended for use in production as a security mitigation. Therefore, it supports
boot parameters that allow to disable KASAN competely or otherwise control
particular KASAN features.
boot parameters that allow disabling KASAN or controlling its features.
- ``kasan=off`` or ``=on`` controls whether KASAN is enabled (default: ``on``).
- ``kasan.mode=sync`` or ``=async`` controls whether KASAN is configured in
synchronous or asynchronous mode of execution (default: ``sync``).
Synchronous mode: a bad access is detected immediately when a tag
check fault occurs.
Asynchronous mode: a bad access detection is delayed. When a tag check
fault occurs, the information is stored in hardware (in the TFSR_EL1
register for arm64). The kernel periodically checks the hardware and
only reports tag faults during these checks.
- ``kasan.stacktrace=off`` or ``=on`` disables or enables alloc and free stack
traces collection (default: ``on``).
- ``kasan.fault=report`` or ``=panic`` controls whether to only print a KASAN
report or also panic the kernel (default: ``report``). Note, that tag
checking gets disabled after the first reported bug.
For developers
~~~~~~~~~~~~~~
Software KASAN modes use compiler instrumentation to insert validity checks.
Such instrumentation might be incompatible with some part of the kernel, and
therefore needs to be disabled. To disable instrumentation for specific files
or directories, add a line similar to the following to the respective kernel
Makefile:
- For a single file (e.g. main.o)::
KASAN_SANITIZE_main.o := n
- For all files in one directory::
KASAN_SANITIZE := n
report or also panic the kernel (default: ``report``). The panic happens even
if ``kasan_multi_shot`` is enabled.
Implementation details
----------------------
@ -192,12 +209,11 @@ Implementation details
Generic KASAN
~~~~~~~~~~~~~
From a high level perspective, KASAN's approach to memory error detection is
similar to that of kmemcheck: use shadow memory to record whether each byte of
memory is safe to access, and use compile-time instrumentation to insert checks
of shadow memory on each memory access.
Software KASAN modes use shadow memory to record whether each byte of memory is
safe to access and use compile-time instrumentation to insert shadow memory
checks before each memory access.
Generic KASAN dedicates 1/8th of kernel memory to its shadow memory (e.g. 16TB
Generic KASAN dedicates 1/8th of kernel memory to its shadow memory (16TB
to cover 128TB on x86_64) and uses direct mapping with a scale and offset to
translate a memory address to its corresponding shadow address.
@ -206,113 +222,105 @@ address::
static inline void *kasan_mem_to_shadow(const void *addr)
{
return ((unsigned long)addr >> KASAN_SHADOW_SCALE_SHIFT)
return (void *)((unsigned long)addr >> KASAN_SHADOW_SCALE_SHIFT)
+ KASAN_SHADOW_OFFSET;
}
where ``KASAN_SHADOW_SCALE_SHIFT = 3``.
Compile-time instrumentation is used to insert memory access checks. Compiler
inserts function calls (__asan_load*(addr), __asan_store*(addr)) before each
memory access of size 1, 2, 4, 8 or 16. These functions check whether memory
access is valid or not by checking corresponding shadow memory.
inserts function calls (``__asan_load*(addr)``, ``__asan_store*(addr)``) before
each memory access of size 1, 2, 4, 8, or 16. These functions check whether
memory accesses are valid or not by checking corresponding shadow memory.
GCC 5.0 has possibility to perform inline instrumentation. Instead of making
function calls GCC directly inserts the code to check the shadow memory.
This option significantly enlarges kernel but it gives x1.1-x2 performance
boost over outline instrumented kernel.
With inline instrumentation, instead of making function calls, the compiler
directly inserts the code to check shadow memory. This option significantly
enlarges the kernel, but it gives an x1.1-x2 performance boost over the
outline-instrumented kernel.
Generic KASAN also reports the last 2 call stacks to creation of work that
potentially has access to an object. Call stacks for the following are shown:
call_rcu() and workqueue queuing.
Generic KASAN is the only mode that delays the reuse of freed object via
Generic KASAN is the only mode that delays the reuse of freed objects via
quarantine (see mm/kasan/quarantine.c for implementation).
Software tag-based KASAN
~~~~~~~~~~~~~~~~~~~~~~~~
Software tag-based KASAN requires software memory tagging support in the form
of HWASan-like compiler instrumentation (see HWASan documentation for details).
Software tag-based KASAN is currently only implemented for arm64 architecture.
Software tag-based KASAN uses a software memory tagging approach to checking
access validity. It is currently only implemented for the arm64 architecture.
Software tag-based KASAN uses the Top Byte Ignore (TBI) feature of arm64 CPUs
to store a pointer tag in the top byte of kernel pointers. Like generic KASAN
it uses shadow memory to store memory tags associated with each 16-byte memory
cell (therefore it dedicates 1/16th of the kernel memory for shadow memory).
to store a pointer tag in the top byte of kernel pointers. It uses shadow memory
to store memory tags associated with each 16-byte memory cell (therefore, it
dedicates 1/16th of the kernel memory for shadow memory).
On each memory allocation software tag-based KASAN generates a random tag, tags
the allocated memory with this tag, and embeds this tag into the returned
On each memory allocation, software tag-based KASAN generates a random tag, tags
the allocated memory with this tag, and embeds the same tag into the returned
pointer.
Software tag-based KASAN uses compile-time instrumentation to insert checks
before each memory access. These checks make sure that tag of the memory that
is being accessed is equal to tag of the pointer that is used to access this
memory. In case of a tag mismatch software tag-based KASAN prints a bug report.
before each memory access. These checks make sure that the tag of the memory
that is being accessed is equal to the tag of the pointer that is used to access
this memory. In case of a tag mismatch, software tag-based KASAN prints a bug
report.
Software tag-based KASAN also has two instrumentation modes (outline, that
emits callbacks to check memory accesses; and inline, that performs the shadow
Software tag-based KASAN also has two instrumentation modes (outline, which
emits callbacks to check memory accesses; and inline, which performs the shadow
memory checks inline). With outline instrumentation mode, a bug report is
simply printed from the function that performs the access check. With inline
instrumentation a brk instruction is emitted by the compiler, and a dedicated
brk handler is used to print bug reports.
printed from the function that performs the access check. With inline
instrumentation, a ``brk`` instruction is emitted by the compiler, and a
dedicated ``brk`` handler is used to print bug reports.
Software tag-based KASAN uses 0xFF as a match-all pointer tag (accesses through
pointers with 0xFF pointer tag aren't checked). The value 0xFE is currently
pointers with the 0xFF pointer tag are not checked). The value 0xFE is currently
reserved to tag freed memory regions.
Software tag-based KASAN currently only supports tagging of
kmem_cache_alloc/kmalloc and page_alloc memory.
Software tag-based KASAN currently only supports tagging of slab and page_alloc
memory.
Hardware tag-based KASAN
~~~~~~~~~~~~~~~~~~~~~~~~
Hardware tag-based KASAN is similar to the software mode in concept, but uses
Hardware tag-based KASAN is similar to the software mode in concept but uses
hardware memory tagging support instead of compiler instrumentation and
shadow memory.
Hardware tag-based KASAN is currently only implemented for arm64 architecture
and based on both arm64 Memory Tagging Extension (MTE) introduced in ARMv8.5
Instruction Set Architecture, and Top Byte Ignore (TBI).
Instruction Set Architecture and Top Byte Ignore (TBI).
Special arm64 instructions are used to assign memory tags for each allocation.
Same tags are assigned to pointers to those allocations. On every memory
access, hardware makes sure that tag of the memory that is being accessed is
equal to tag of the pointer that is used to access this memory. In case of a
tag mismatch a fault is generated and a report is printed.
access, hardware makes sure that the tag of the memory that is being accessed is
equal to the tag of the pointer that is used to access this memory. In case of a
tag mismatch, a fault is generated, and a report is printed.
Hardware tag-based KASAN uses 0xFF as a match-all pointer tag (accesses through
pointers with 0xFF pointer tag aren't checked). The value 0xFE is currently
pointers with the 0xFF pointer tag are not checked). The value 0xFE is currently
reserved to tag freed memory regions.
Hardware tag-based KASAN currently only supports tagging of
kmem_cache_alloc/kmalloc and page_alloc memory.
Hardware tag-based KASAN currently only supports tagging of slab and page_alloc
memory.
If the hardware doesn't support MTE (pre ARMv8.5), hardware tag-based KASAN
won't be enabled. In this case all boot parameters are ignored.
If the hardware does not support MTE (pre ARMv8.5), hardware tag-based KASAN
will not be enabled. In this case, all KASAN boot parameters are ignored.
Note, that enabling CONFIG_KASAN_HW_TAGS always results in in-kernel TBI being
enabled. Even when kasan.mode=off is provided, or when the hardware doesn't
Note that enabling CONFIG_KASAN_HW_TAGS always results in in-kernel TBI being
enabled. Even when ``kasan.mode=off`` is provided or when the hardware does not
support MTE (but supports TBI).
Hardware tag-based KASAN only reports the first found bug. After that MTE tag
Hardware tag-based KASAN only reports the first found bug. After that, MTE tag
checking gets disabled.
What memory accesses are sanitised by KASAN?
--------------------------------------------
Shadow memory
-------------
The kernel maps memory in a number of different parts of the address
space. This poses something of a problem for KASAN, which requires
that all addresses accessed by instrumented code have a valid shadow
region.
The kernel maps memory in several different parts of the address space.
The range of kernel virtual addresses is large: there is not enough real
memory to support a real shadow region for every address that could be
accessed by the kernel. Therefore, KASAN only maps real shadow for certain
parts of the address space.
The range of kernel virtual addresses is large: there is not enough
real memory to support a real shadow region for every address that
could be accessed by the kernel.
By default
~~~~~~~~~~
Default behaviour
~~~~~~~~~~~~~~~~~
By default, architectures only map real memory over the shadow region
for the linear mapping (and potentially other small areas). For all
@ -321,10 +329,9 @@ page is mapped over the shadow area. This read-only shadow page
declares all memory accesses as permitted.
This presents a problem for modules: they do not live in the linear
mapping, but in a dedicated module space. By hooking in to the module
allocator, KASAN can temporarily map real shadow memory to cover
them. This allows detection of invalid accesses to module globals, for
example.
mapping but in a dedicated module space. By hooking into the module
allocator, KASAN temporarily maps real shadow memory to cover them.
This allows detection of invalid accesses to module globals, for example.
This also creates an incompatibility with ``VMAP_STACK``: if the stack
lives in vmalloc space, it will be shadowed by the read-only page, and
@ -335,9 +342,10 @@ CONFIG_KASAN_VMALLOC
~~~~~~~~~~~~~~~~~~~~
With ``CONFIG_KASAN_VMALLOC``, KASAN can cover vmalloc space at the
cost of greater memory usage. Currently this is only supported on x86.
cost of greater memory usage. Currently, this is supported on x86,
riscv, s390, and powerpc.
This works by hooking into vmalloc and vmap, and dynamically
This works by hooking into vmalloc and vmap and dynamically
allocating real shadow memory to back the mappings.
Most mappings in vmalloc space are small, requiring less than a full
@ -356,28 +364,76 @@ memory.
To avoid the difficulties around swapping mappings around, KASAN expects
that the part of the shadow region that covers the vmalloc space will
not be covered by the early shadow page, but will be left
unmapped. This will require changes in arch-specific code.
not be covered by the early shadow page but will be left unmapped.
This will require changes in arch-specific code.
This allows ``VMAP_STACK`` support on x86, and can simplify support of
This allows ``VMAP_STACK`` support on x86 and can simplify support of
architectures that do not have a fixed module region.
CONFIG_KASAN_KUNIT_TEST and CONFIG_KASAN_MODULE_TEST
----------------------------------------------------
For developers
--------------
KASAN tests consist of two parts:
Ignoring accesses
~~~~~~~~~~~~~~~~~
Software KASAN modes use compiler instrumentation to insert validity checks.
Such instrumentation might be incompatible with some parts of the kernel, and
therefore needs to be disabled.
Other parts of the kernel might access metadata for allocated objects.
Normally, KASAN detects and reports such accesses, but in some cases (e.g.,
in memory allocators), these accesses are valid.
For software KASAN modes, to disable instrumentation for a specific file or
directory, add a ``KASAN_SANITIZE`` annotation to the respective kernel
Makefile:
- For a single file (e.g., main.o)::
KASAN_SANITIZE_main.o := n
- For all files in one directory::
KASAN_SANITIZE := n
For software KASAN modes, to disable instrumentation on a per-function basis,
use the KASAN-specific ``__no_sanitize_address`` function attribute or the
generic ``noinstr`` one.
Note that disabling compiler instrumentation (either on a per-file or a
per-function basis) makes KASAN ignore the accesses that happen directly in
that code for software KASAN modes. It does not help when the accesses happen
indirectly (through calls to instrumented functions) or with the hardware
tag-based mode that does not use compiler instrumentation.
For software KASAN modes, to disable KASAN reports in a part of the kernel code
for the current task, annotate this part of the code with a
``kasan_disable_current()``/``kasan_enable_current()`` section. This also
disables the reports for indirect accesses that happen through function calls.
For tag-based KASAN modes (include the hardware one), to disable access
checking, use ``kasan_reset_tag()`` or ``page_kasan_tag_reset()``. Note that
temporarily disabling access checking via ``page_kasan_tag_reset()`` requires
saving and restoring the per-page KASAN tag via
``page_kasan_tag``/``page_kasan_tag_set``.
Tests
~~~~~
There are KASAN tests that allow verifying that KASAN works and can detect
certain types of memory corruptions. The tests consist of two parts:
1. Tests that are integrated with the KUnit Test Framework. Enabled with
``CONFIG_KASAN_KUNIT_TEST``. These tests can be run and partially verified
automatically in a few different ways, see the instructions below.
automatically in a few different ways; see the instructions below.
2. Tests that are currently incompatible with KUnit. Enabled with
``CONFIG_KASAN_MODULE_TEST`` and can only be run as a module. These tests can
only be verified manually, by loading the kernel module and inspecting the
only be verified manually by loading the kernel module and inspecting the
kernel log for KASAN reports.
Each KUnit-compatible KASAN test prints a KASAN report if an error is detected.
Then the test prints its number and status.
Each KUnit-compatible KASAN test prints one of multiple KASAN reports if an
error is detected. Then the test prints its number and status.
When a test passes::
@ -405,30 +461,24 @@ Or, if one of the tests failed::
not ok 1 - kasan
There are a few ways to run KUnit-compatible KASAN tests.
1. Loadable module
~~~~~~~~~~~~~~~~~~
With ``CONFIG_KUNIT`` enabled, ``CONFIG_KASAN_KUNIT_TEST`` can be built as
a loadable module and run on any architecture that supports KASAN by loading
the module with insmod or modprobe. The module is called ``test_kasan``.
With ``CONFIG_KUNIT`` enabled, KASAN-KUnit tests can be built as a loadable
module and run by loading ``test_kasan.ko`` with ``insmod`` or ``modprobe``.
2. Built-In
~~~~~~~~~~~
With ``CONFIG_KUNIT`` built-in, ``CONFIG_KASAN_KUNIT_TEST`` can be built-in
on any architecure that supports KASAN. These and any other KUnit tests enabled
will run and print the results at boot as a late-init call.
With ``CONFIG_KUNIT`` built-in, KASAN-KUnit tests can be built-in as well.
In this case, the tests will run at boot as a late-init call.
3. Using kunit_tool
~~~~~~~~~~~~~~~~~~~
With ``CONFIG_KUNIT`` and ``CONFIG_KASAN_KUNIT_TEST`` built-in, it's also
possible use ``kunit_tool`` to see the results of these and other KUnit tests
in a more readable way. This will not print the KASAN reports of the tests that
passed. Use `KUnit documentation <https://www.kernel.org/doc/html/latest/dev-tools/kunit/index.html>`_
for more up-to-date information on ``kunit_tool``.
With ``CONFIG_KUNIT`` and ``CONFIG_KASAN_KUNIT_TEST`` built-in, it is also
possible to use ``kunit_tool`` to see the results of KUnit tests in a more
readable way. This will not print the KASAN reports of the tests that passed.
See `KUnit documentation <https://www.kernel.org/doc/html/latest/dev-tools/kunit/index.html>`_
for more up-to-date information on ``kunit_tool``.
.. _KUnit: https://www.kernel.org/doc/html/latest/dev-tools/kunit/index.html

View File

@ -1,3 +1,6 @@
.. SPDX-License-Identifier: GPL-2.0
.. Copyright (C) 2019, Google LLC.
The Kernel Concurrency Sanitizer (KCSAN)
========================================

View File

@ -78,8 +78,82 @@ Similarly to the above, it can be useful to add test-specific logic.
void test_only_hook(void) { }
#endif
TODO(dlatypov@google.com): add an example of using ``current->kunit_test`` in
such a hook when it's not only updated for ``CONFIG_KASAN=y``.
This test-only code can be made more useful by accessing the current kunit
test, see below.
Accessing the current test
--------------------------
In some cases, you need to call test-only code from outside the test file, e.g.
like in the example above or if you're providing a fake implementation of an
ops struct.
There is a ``kunit_test`` field in ``task_struct``, so you can access it via
``current->kunit_test``.
Here's a slightly in-depth example of how one could implement "mocking":
.. code-block:: c
#include <linux/sched.h> /* for current */
struct test_data {
int foo_result;
int want_foo_called_with;
};
static int fake_foo(int arg)
{
struct kunit *test = current->kunit_test;
struct test_data *test_data = test->priv;
KUNIT_EXPECT_EQ(test, test_data->want_foo_called_with, arg);
return test_data->foo_result;
}
static void example_simple_test(struct kunit *test)
{
/* Assume priv is allocated in the suite's .init */
struct test_data *test_data = test->priv;
test_data->foo_result = 42;
test_data->want_foo_called_with = 1;
/* In a real test, we'd probably pass a pointer to fake_foo somewhere
* like an ops struct, etc. instead of calling it directly. */
KUNIT_EXPECT_EQ(test, fake_foo(1), 42);
}
Note: here we're able to get away with using ``test->priv``, but if you wanted
something more flexible you could use a named ``kunit_resource``, see :doc:`api/test`.
Failing the current test
------------------------
But sometimes, you might just want to fail the current test. In that case, we
have ``kunit_fail_current_test(fmt, args...)`` which is defined in ``<kunit/test-bug.h>`` and
doesn't require pulling in ``<kunit/test.h>``.
E.g. say we had an option to enable some extra debug checks on some data structure:
.. code-block:: c
#include <kunit/test-bug.h>
#ifdef CONFIG_EXTRA_DEBUG_CHECKS
static void validate_my_data(struct data *data)
{
if (is_valid(data))
return;
kunit_fail_current_test("data %p is invalid", data);
/* Normal, non-KUnit, error reporting code here. */
}
#else
static void my_debug_function(void) { }
#endif
Customizing error messages
--------------------------

View File

@ -0,0 +1,117 @@
.. SPDX-License-Identifier: GPL-2.0
====================
Kernel Testing Guide
====================
There are a number of different tools for testing the Linux kernel, so knowing
when to use each of them can be a challenge. This document provides a rough
overview of their differences, and how they fit together.
Writing and Running Tests
=========================
The bulk of kernel tests are written using either the kselftest or KUnit
frameworks. These both provide infrastructure to help make running tests and
groups of tests easier, as well as providing helpers to aid in writing new
tests.
If you're looking to verify the behaviour of the Kernel — particularly specific
parts of the kernel — then you'll want to use KUnit or kselftest.
The Difference Between KUnit and kselftest
------------------------------------------
KUnit (Documentation/dev-tools/kunit/index.rst) is an entirely in-kernel system
for "white box" testing: because test code is part of the kernel, it can access
internal structures and functions which aren't exposed to userspace.
KUnit tests therefore are best written against small, self-contained parts
of the kernel, which can be tested in isolation. This aligns well with the
concept of 'unit' testing.
For example, a KUnit test might test an individual kernel function (or even a
single codepath through a function, such as an error handling case), rather
than a feature as a whole.
This also makes KUnit tests very fast to build and run, allowing them to be
run frequently as part of the development process.
There is a KUnit test style guide which may give further pointers in
Documentation/dev-tools/kunit/style.rst
kselftest (Documentation/dev-tools/kselftest.rst), on the other hand, is
largely implemented in userspace, and tests are normal userspace scripts or
programs.
This makes it easier to write more complicated tests, or tests which need to
manipulate the overall system state more (e.g., spawning processes, etc.).
However, it's not possible to call kernel functions directly from kselftest.
This means that only kernel functionality which is exposed to userspace somehow
(e.g. by a syscall, device, filesystem, etc.) can be tested with kselftest. To
work around this, some tests include a companion kernel module which exposes
more information or functionality. If a test runs mostly or entirely within the
kernel, however, KUnit may be the more appropriate tool.
kselftest is therefore suited well to tests of whole features, as these will
expose an interface to userspace, which can be tested, but not implementation
details. This aligns well with 'system' or 'end-to-end' testing.
For example, all new system calls should be accompanied by kselftest tests.
Code Coverage Tools
===================
The Linux Kernel supports two different code coverage measurement tools. These
can be used to verify that a test is executing particular functions or lines
of code. This is useful for determining how much of the kernel is being tested,
and for finding corner-cases which are not covered by the appropriate test.
:doc:`gcov` is GCC's coverage testing tool, which can be used with the kernel
to get global or per-module coverage. Unlike KCOV, it does not record per-task
coverage. Coverage data can be read from debugfs, and interpreted using the
usual gcov tooling.
:doc:`kcov` is a feature which can be built in to the kernel to allow
capturing coverage on a per-task level. It's therefore useful for fuzzing and
other situations where information about code executed during, for example, a
single syscall is useful.
Dynamic Analysis Tools
======================
The kernel also supports a number of dynamic analysis tools, which attempt to
detect classes of issues when they occur in a running kernel. These typically
each look for a different class of bugs, such as invalid memory accesses,
concurrency issues such as data races, or other undefined behaviour like
integer overflows.
Some of these tools are listed below:
* kmemleak detects possible memory leaks. See
Documentation/dev-tools/kmemleak.rst
* KASAN detects invalid memory accesses such as out-of-bounds and
use-after-free errors. See Documentation/dev-tools/kasan.rst
* UBSAN detects behaviour that is undefined by the C standard, like integer
overflows. See Documentation/dev-tools/ubsan.rst
* KCSAN detects data races. See Documentation/dev-tools/kcsan.rst
* KFENCE is a low-overhead detector of memory issues, which is much faster than
KASAN and can be used in production. See Documentation/dev-tools/kfence.rst
* lockdep is a locking correctness validator. See
Documentation/locking/lockdep-design.rst
* There are several other pieces of debug instrumentation in the kernel, many
of which can be found in lib/Kconfig.debug
These tools tend to test the kernel as a whole, and do not "pass" like
kselftest or KUnit tests. They can be combined with KUnit or kselftest by
running tests on a kernel with these tools enabled: you can then be sure
that none of these errors are occurring during the test.
Some of these tools integrate with KUnit or kselftest and will
automatically fail tests if an issue is detected.

View File

@ -1,4 +1,4 @@
# SPDX-License-Identifier: GPL-2.0-only
*.example.dts
processed-schema*.yaml
processed-schema*.json
/processed-schema*.yaml
/processed-schema*.json

View File

@ -5,7 +5,7 @@ DT_MK_SCHEMA ?= dt-mk-schema
DT_SCHEMA_LINT = $(shell which yamllint)
DT_SCHEMA_MIN_VERSION = 2020.8.1
DT_SCHEMA_MIN_VERSION = 2021.2.1
PHONY += check_dtschema_version
check_dtschema_version:
@ -48,13 +48,16 @@ define rule_chkdt
$(call cmd,mk_schema)
endef
DT_DOCS = $(shell $(find_cmd) | sed -e 's|^$(srctree)/||')
DT_DOCS = $(patsubst $(srctree)/%,%,$(shell $(find_cmd)))
override DTC_FLAGS := \
-Wno-avoid_unnecessary_addr_size \
-Wno-graph_child_address \
-Wno-interrupt_provider
# Disable undocumented compatible checks until warning free
override DT_CHECKER_FLAGS ?=
$(obj)/processed-schema-examples.json: $(DT_DOCS) $(src)/.yamllint check_dtschema_version FORCE
$(call if_changed_rule,chkdt)

View File

@ -109,6 +109,7 @@ properties:
- libretech,aml-s905d-pc
- phicomm,n1
- smartlabs,sml5442tw
- videostrong,gxl-kii-pro
- const: amlogic,s905d
- const: amlogic,meson-gxl
@ -120,8 +121,10 @@ properties:
- khadas,vim2
- kingnovel,r-box-pro
- libretech,aml-s912-pc
- minix,neo-u9h
- nexbox,a1
- tronsmart,vega-s96
- videostrong,gxm-kiii-pro
- wetek,core2
- const: amlogic,s912
- const: amlogic,meson-gxm

View File

@ -0,0 +1,64 @@
# SPDX-License-Identifier: GPL-2.0-only OR BSD-2-Clause
%YAML 1.2
---
$id: http://devicetree.org/schemas/arm/apple.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: Apple ARM Machine Device Tree Bindings
maintainers:
- Hector Martin <marcan@marcan.st>
description: |
ARM platforms using SoCs designed by Apple Inc., branded "Apple Silicon".
This currently includes devices based on the "M1" SoC, starting with the
three Mac models released in late 2020:
- Mac mini (M1, 2020)
- MacBook Pro (13-inch, M1, 2020)
- MacBook Air (M1, 2020)
The compatible property should follow this format:
compatible = "apple,<targettype>", "apple,<socid>", "apple,arm-platform";
<targettype> represents the board/device and comes from the `target-type`
property of the root node of the Apple Device Tree, lowercased. It can be
queried on macOS using the following command:
$ ioreg -d2 -l | grep target-type
<socid> is the lowercased SoC ID. Apple uses at least *five* different
names for their SoCs:
- Marketing name ("M1")
- Internal name ("H13G")
- Codename ("Tonga")
- SoC ID ("T8103")
- Package/IC part number ("APL1102")
Devicetrees should use the lowercased SoC ID, to avoid confusion if
multiple SoCs share the same marketing name. This can be obtained from
the `compatible` property of the arm-io node of the Apple Device Tree,
which can be queried as follows on macOS:
$ ioreg -n arm-io | grep compatible
properties:
$nodename:
const: "/"
compatible:
oneOf:
- description: Apple M1 SoC based platforms
items:
- enum:
- apple,j274 # Mac mini (M1, 2020)
- apple,j293 # MacBook Pro (13-inch, M1, 2020)
- apple,j313 # MacBook Air (M1, 2020)
- const: apple,t8103
- const: apple,arm-platform
additionalProperties: true
...

View File

@ -21,6 +21,7 @@ properties:
items:
- enum:
- netgear,r8000p
- tplink,archer-c2300-v1
- const: brcm,bcm4906
- const: brcm,bcm4908

View File

@ -26,10 +26,7 @@ properties:
- const: simple-mfd
mboxes:
$ref: '/schemas/types.yaml#/definitions/phandle'
description: |
Phandle to the firmware device's Mailbox.
(See: ../mailbox/mailbox.txt for more information)
maxItems: 1
clocks:
type: object
@ -64,6 +61,21 @@ properties:
- compatible
- "#reset-cells"
pwm:
type: object
properties:
compatible:
const: raspberrypi,firmware-poe-pwm
"#pwm-cells":
# See pwm.yaml in this directory for a description of the cells format.
const: 2
required:
- compatible
- "#pwm-cells"
additionalProperties: false
required:
@ -87,5 +99,10 @@ examples:
compatible = "raspberrypi,firmware-reset";
#reset-cells = <1>;
};
pwm: pwm {
compatible = "raspberrypi,firmware-poe-pwm";
#pwm-cells = <2>;
};
};
...

View File

@ -85,6 +85,8 @@ properties:
compatible:
enum:
- apple,icestorm
- apple,firestorm
- arm,arm710t
- arm,arm720t
- arm,arm740t
@ -256,13 +258,11 @@ properties:
where voltage is in V, frequency is in MHz.
power-domains:
$ref: '/schemas/types.yaml#/definitions/phandle-array'
description:
List of phandles and PM domain specifiers, as defined by bindings of the
PM domain provider (see also ../power_domain.txt).
power-domain-names:
$ref: '/schemas/types.yaml#/definitions/string-array'
description:
A list of power domain name strings sorted in the same order as the
power-domains property.

View File

@ -0,0 +1,75 @@
# SPDX-License-Identifier: GPL-2.0-only or BSD-2-Clause
# Copyright 2021, Arm Ltd
%YAML 1.2
---
$id: "http://devicetree.org/schemas/arm/ete.yaml#"
$schema: "http://devicetree.org/meta-schemas/core.yaml#"
title: ARM Embedded Trace Extensions
maintainers:
- Suzuki K Poulose <suzuki.poulose@arm.com>
- Mathieu Poirier <mathieu.poirier@linaro.org>
description: |
Arm Embedded Trace Extension(ETE) is a per CPU trace component that
allows tracing the CPU execution. It overlaps with the CoreSight ETMv4
architecture and has extended support for future architecture changes.
The trace generated by the ETE could be stored via legacy CoreSight
components (e.g, TMC-ETR) or other means (e.g, using a per CPU buffer
Arm Trace Buffer Extension (TRBE)). Since the ETE can be connected to
legacy CoreSight components, a node must be listed per instance, along
with any optional connection graph as per the coresight bindings.
See bindings/arm/coresight.txt.
properties:
$nodename:
pattern: "^ete([0-9a-f]+)$"
compatible:
items:
- const: arm,embedded-trace-extension
cpu:
description: |
Handle to the cpu this ETE is bound to.
$ref: /schemas/types.yaml#/definitions/phandle
out-ports:
description: |
Output connections from the ETE to legacy CoreSight trace bus.
$ref: /schemas/graph.yaml#/properties/ports
properties:
port:
description: Output connection from the ETE to legacy CoreSight Trace bus.
$ref: /schemas/graph.yaml#/properties/port
required:
- compatible
- cpu
additionalProperties: false
examples:
# An ETE node without legacy CoreSight connections
- |
ete0 {
compatible = "arm,embedded-trace-extension";
cpu = <&cpu_0>;
};
# An ETE node with legacy CoreSight connections
- |
ete1 {
compatible = "arm,embedded-trace-extension";
cpu = <&cpu_1>;
out-ports { /* legacy coresight connection */
port {
ete1_out_port: endpoint {
remote-endpoint = <&funnel_in_port0>;
};
};
};
};
...

View File

@ -617,6 +617,7 @@ properties:
- kam,imx7d-flex-concentrator # Kamstrup OMNIA Flex Concentrator
- kam,imx7d-flex-concentrator-mfg # Kamstrup OMNIA Flex Concentrator in manufacturing mode
- novtech,imx7d-meerkat96 # i.MX7 Meerkat96 Board
- remarkable,imx7d-remarkable2 # i.MX7D ReMarkable 2 E-Ink Tablet
- technexion,imx7d-pico-dwarf # TechNexion i.MX7D Pico-Dwarf
- technexion,imx7d-pico-hobbit # TechNexion i.MX7D Pico-Hobbit
- technexion,imx7d-pico-nymph # TechNexion i.MX7D Pico-Nymph
@ -688,6 +689,14 @@ properties:
- variscite,var-som-mx8mm # i.MX8MM Variscite VAR-SOM-MX8MM module
- const: fsl,imx8mm
- description: Engicam i.Core MX8M Mini SoM based boards
items:
- enum:
- engicam,icore-mx8mm-ctouch2 # i.MX8MM Engicam i.Core MX8M Mini C.TOUCH 2.0
- engicam,icore-mx8mm-edimm2.2 # i.MX8MM Engicam i.Core MX8M Mini EDIMM2.2 Starter Kit
- const: engicam,icore-mx8mm # i.MX8MM Engicam i.Core MX8M Mini SoM
- const: fsl,imx8mm
- description: Kontron BL i.MX8MM (N801X S) Board
items:
- const: kontron,imx8mm-n801x-s
@ -733,6 +742,7 @@ properties:
- einfochips,imx8mq-thor96 # i.MX8MQ Thor96 Board
- fsl,imx8mq-evk # i.MX8MQ EVK Board
- google,imx8mq-phanbell # Google Coral Edge TPU
- kontron,pitx-imx8m # Kontron pITX-imx8m Board
- purism,librem5-devkit # Purism Librem5 devkit
- solidrun,hummingboard-pulse # SolidRun Hummingboard Pulse
- technexion,pico-pi-imx8m # TechNexion PICO-PI-8M evk
@ -755,6 +765,12 @@ properties:
- const: zii,imx8mq-ultra
- const: fsl,imx8mq
- description: i.MX8QM based Boards
items:
- enum:
- fsl,imx8qm-mek # i.MX8QM MEK Board
- const: fsl,imx8qm
- description: i.MX8QXP based Boards
items:
- enum:

View File

@ -142,8 +142,8 @@ mpp50 50 gpio, ge1(rxclk), mss_i2c(sda), spi1(csn0), uart2(txd), uart0(rxd), xg(
mpp51 51 gpio, ge1(rxd0), mss_i2c(sck), spi1(csn1), uart2(rxd), uart0(cts), sdio(pwr10)
mpp52 52 gpio, ge1(rxd1), synce1(clk), synce2(clk), spi1(csn2), uart1(cts), led(clk), pcie(rstoutn), pcie0(clkreq)
mpp53 53 gpio, ge1(rxd2), ptp(clk), spi1(csn3), uart1(rxd), led(stb), sdio(led)
mpp54 54 gpio, ge1(rxd3), synce2(clk), ptp(pclk_out), synce1(clk), led(data), sdio(hw_rst), sdio(wr_protect)
mpp55 55 gpio, ge1(rxctl_rxdv), ptp(pulse), sdio(led), sdio(card_detect)
mpp54 54 gpio, ge1(rxd3), synce2(clk), ptp(pclk_out), synce1(clk), led(data), sdio(hw_rst), sdio_wp(wr_protect)
mpp55 55 gpio, ge1(rxctl_rxdv), ptp(pulse), sdio(led), sdio_cd(card_detect)
mpp56 56 gpio, tdm(drx), au(i2sdo_spdifo), spi0(clk), uart1(rxd), sata1(present_act), sdio(clk)
mpp57 57 gpio, mss_i2c(sda), ptp(pclk_out), tdm(intn), au(i2sbclk), spi0(mosi), uart1(txd), sata0(present_act), sdio(cmd)
mpp58 58 gpio, mss_i2c(sck), ptp(clk), tdm(rstn), au(i2sdi), spi0(miso), uart1(cts), led(clk), sdio(d0)

Some files were not shown because too many files have changed in this diff Show More